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S. Y. Cheng and S. T. Yau showed in [2] that any C? bounded pseudoconvex
domain in C” has a complete Einstein-K&dhler metric with negative Ricci curvature;
their solution satisfied the Monge-Ampére equation Det[azg/aziazj] =e("__+')g,
g = o on the boundary, where the metric is given by (62g/az,-6zj)dz’®dz’ . N.
Mok and S. T. Yau [4] have extended this result to arbitrary bounded pseudo-
convex domains in C”. Explicit solutions, however, are only known in the very
simplest cases. The purpose of this paper is to describe the Einstein-Kédhler metric
for the domain Q, = {|z|*+ |w|* <1}, p > 0. These domains exhibit a wide range
of boundary behavior. For p > 1, the special boundary points |z] =1 are C? weakly
pseudoconvex, and the domains interpolate between B” and B"~'x B. For 1<
p <1, the domains are C! strictly convex. For p < 1, the boundary intersects cer-
tain real planes in cusps.

The main technique is to use the (2n —1)-dimensional noncompact automor-
phism group of @ and the biholomorphic invariance of the Einstein-Kahler metric
to reduce the Monge-Ampeére equation for the metric to an ordinary differential
equation in the auxiliary function X = |w|%/(1— |z|?)"”. This differential equa-
tion can be easily solved to give an implicit function in X; however, all informa-
tion of interest is obtained by indirect methods.

The function X contains geometric information about the domain. The leaves
X = constant define a real foliation of the domain, the leaves of which converge
at the special boundary points |z| =1, w=0. The automorphism group of the
domain preserves this foliation, and acts transitively within each leaf. Thus, any
biholomorphically invariant quantity can be reduced to a function of X, and it as-
sumes its full range of values arbitrarily near the special boundary points |z|=1;
in particular, any nonconstant biholomorphically invariant quantity exhibits no
limiting behavior near these boundary points.

The results of these calculations have some interesting consequences. When
p>1, the special boundary points are C? weakly pseudoconvex, and the Rie-
mannian sectional curvature for the domain is bounded between negative con-
stants. In particular, a local Schwarz lemma can be used to obtain bounds on the
metric for any domain locally approximating Q on the inside (see Theorems 4 & 5).
On the other hand, there are C! strictly convex domains for which the Einstein-
Kéahler metric has strictly positive holomorphic sectional curvature in certain di-
rections at some points (see Theorem 4). In all cases where p > 0, volume esti-
mates on the Einstein-Kahler metric for locally approximating domains can be
obtained (Theorem 5).
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