INTEGRAL GENERATORS IN A CERTAIN QUARTIC FIELD AND RELATED DIOPHANTINE EQUATIONS

Andrew Bremner

Given a subring of the ring of integers in an algebraic number field K, then an effective procedure is known for determining whether or not the ring is principally generated over **Z** (see Györy [6, Corollaire 3.3]). In the case that the ring does have principal generators, then it clearly has infinitely many, since $\mathbf{Z}[\alpha] = \mathbf{Z}[m+\alpha]$ for an arbitrary integer m. If, however, one defines two algebraic integers α , α' to be equivalent if $\alpha - \alpha' \equiv 0 \mod \mathbb{Z}$, then Györy shows that the numbers of generators up to equivalence is finite, and effectively bounds the height of such a generator in terms of the degree of K over \mathbf{Q} and the discriminant of K. Actually to determine all the generators in a given ring still seems in general a difficult question, since the bound on the height of the generators lies well beyond present computing power. Nagell [10] solves this problem in the three quartic fields corresponding to the fifth, eighth, and twelfth roots of unity. An equivalent formulation of the problem is to determine all those β in the number ring $\mathbb{Z}[\alpha]$ of index 1; or again, to determine all those β in $\mathbf{Z}[\alpha]$ satisfying discriminant (α) = discriminant (β) . Nagell [11] in a later paper observes that in the field $Q(\xi)$, $\xi^4 - \xi + 1 = 0$, then the discriminants of $\xi, \xi^2, \xi^3, \xi^4, \xi^6, \xi^7$ are all equal to 229, and notes that it is not known if the discriminant of ξ^m can equal 229 for m > 7.

In this paper we solve this problem as a corollary to finding all the generators for the ring of integers $\mathbb{Z}[\xi]$ in $\mathbb{Q}(\xi)$. This in turn is achieved by solving in integers the Diophantine equation $G^2 + 6183 = 4H^3$; this latter involves a considerable amount of numerical detail about six particular quartic extensions of \mathbb{Q} . In particular, a standard algorithm for computing units had to be strengthened in order that calculations by computer could be effective. I wish to thank here the referee for appreciably improving the presentation of this paper.

2. We consider the quartic field $Q(\xi)$, where $\xi^4 - \xi + 1 = 0$, and wish to determine those α in $\mathbb{Z}[\xi]$ with $\mathbb{Z}[\alpha] = \mathbb{Z}[\xi]$. Denote the conjugates of ξ by $\xi_1 = \xi, \xi_2, \xi_3, \xi_4$ and similarly define α_i , i = 1, ..., 4. Since $\mathrm{disc}(\alpha) = \mathrm{disc}(\xi)$ and $\mathrm{disc}(\alpha) = \prod_{1 \le i < j \le 4} (\alpha_i - \alpha_j)^2$,

(1)
$$\prod_{1 \le i < j \le 4} \left(\frac{\alpha_i - \alpha_j}{\xi_i - \xi_j} \right) = \pm 1.$$

Now if i, j, k, l is a permutation of 1, 2, 3, 4, then $\xi_i \xi_j + \xi_k \xi_l$ is a zero of the resolvent cubic equation associated to the quartic polynomial $x^4 - x + 1$, namely the equation $\Xi^3 - 4\Xi - 1 = 0$. Simple Galois theory shows that

Received December 8, 1983. Revision received October 11, 1984. Michigan Math. J. 32 (1985).