RANDOM SERIES AND BOUNDED MEAN OSCILLATION

Peter Duren

Dedicated to George Piranian

A function f analytic in the unit disk **D** is said to belong to the *Hardy space* H^p , 0 , if its integral means

$$M_p(r, f) = \left\{ \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p d\theta \right\}^{1/p}$$

remain bounded as r tends to 1. We let $M_{\infty}(r, f)$ denote the maximum of |f(z)| on the circle |z| = r < 1. Thus H^{∞} is the class of bounded analytic functions in **D**. A function $f \in H^1$ is said to be in the space BMOA if its boundary function $F(t) = f(e^{it})$ is of bounded mean oscillation:

$$\sup_{I} \frac{1}{|I|} \int_{I} |F(t) - F_{I}| dt < \infty,$$

where |I| is the length of the interval I and

$$F_I = \frac{1}{|I|} \int_I F(t) \, dt.$$

The Bloch space $\mathfrak B$ consists of all analytic functions f for which

$$\sup_{z\in\mathbf{D}}(1-|z|)|f'(z)|<\infty.$$

The proper inclusions

$$H^{\infty} \subset BMOA \subset \mathfrak{IC}^* = \bigcap_{p < \infty} H^p$$

and BMOA \subset \otimes are well known. Moreover,

$$\mathfrak{G} \not\subset \mathfrak{K}_* = \bigcup_{p>0} H^p.$$

A useful criterion for an analytic function f to belong to BMOA is that

$$d\mu(z) = (1-|z|)|f'(z)|^2 dx dy$$

be a *Carleson measure* on **D**. See [2] and [3] for further background. We shall be concerned with *random power series*

$$f(z) = \sum_{n=0}^{\infty} \epsilon_n a_n z^n, \quad \epsilon_n = \pm 1,$$

where the ϵ_n are random signs and $\limsup \sqrt[n]{|a_n|} \le 1$. More precisely, such functions have the form

Received July 5, 1984.

Michigan Math. J. 32 (1985).