ON CERTAIN ANALYTIC (NEVANLINNA) FUNCTIONS

Maxwell O. Reade and Pavel G. Todorov

1. Introduction. We study the classes N_1 and N_2 of all analytic functions having the representations

(1)
$$f(z) = \int_{-1}^{1} \frac{d\mu(t)}{z - t} \quad \text{and} \quad \phi(z) = \int_{-1}^{1} \frac{z d\mu(t)}{1 - tz},$$

where μ is a probability measure. These classes have been the subject of some interesting research during the recent past. Thale [5] showed that the maximal domain of univalence of $N_1(N_2)$ is the open set |z| > 1(|z| < 1). In two recent notes ([3], [4]) we found the radii of starlikeness and convexity, of order alpha, of N_1 and N_2 . We also proved that for each $\phi \in N_2$, $\phi(z)$ and $z\phi'(z)$ are typically-real for |z| < 1. On the other hand, Goluzin [2] found sharp bounds on the modulus and on the argument of the set TR of all functions $g(z) = z + \cdots$ that are typically-real for |z| < 1. But Goluzin's extremal functions do *not* belong to our class N_2 . Hence it is reasonable for us to try to obtain sharp bounds on Goluzin's functionals $|\phi(z)|$, $|arg \phi(z)|$ for $\phi \in N_2$. We do just that plus more. We also find sharp bounds on $|Im \phi(z)|$, $|\phi'(z)|$ and $arg \phi'(z)$, for $\phi \in N_2$, $0 \le |z| < 1$.

2. Bounds on $|\phi(z)|$ and $|\phi'(z)|$. The kernels

(2)
$$l(z,t) \equiv \frac{z}{1-tz}, \quad k(z,t) \equiv \frac{1}{z-t}$$

play a leading role, as we shall see.

THEOREM 1. For each z, |z| < 1, and for each $\phi \in N_2$, the following inequalities hold:

$$|\phi(z)| \leq \left|\frac{z}{1\pm z}\right|, \quad |z\pm \frac{1}{2}| \leq \frac{1}{2},$$

(4)
$$|\phi(z)| \leq \frac{1}{|\operatorname{Im}(1/z)|}, |z \pm \frac{1}{2}| \geq \frac{1}{2},$$

where for $z \neq 0$, equality in (3) holds only for the appropriate function $\phi(z) \equiv l(z, \pm 1)$ and equality in (4) holds only for $\phi(z) \equiv l(z, t)$, with t = Re(1/z).

Proof. We suppose $z \neq 0$. The integral (1) yields

$$|\phi(z)| \leq \int_{-1}^{1} |l(z,t)| d\mu(t).$$

Hence we study |l(z,t)|, $-1 \le t \le 1$. Let

Received June 6, 1984. Revision received September 17, 1984. Michigan Math. J. 32 (1985).