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1. Introduction. Let f be a meromorphic and locally univalent function in the
upper half-plane U, that is, f’(z) # 0 and any pole of f is simple. It is natural,
when looking for criteria which imply the univalence of f, to introduce the
Schwarzian derivative S(f, z), defined by
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We shall use the notation

U={z:Imz>0}, L={z:Imz<0}, B(z,r)={w:|w—z|=<r}.

If f can be extended to a local homeomorphism F defined on the whole sphere
C then f will be univalent in U. This method for establishing univalence was
emphasized by Ahlfors in [1], where he gave extensions and alternative deriva-
tions of many known criteria for univalence. If F is differentiable at z = zq, say,
the condition |F;| < |F,| for z =z ensures that the Jacobian of F is not zero at zq
and hence that F is a local homeomorphism at zo. The stronger condition
|Fz| < k|F,| for all ze L, where 0 <k <1, says that f has a k-quasiconformal
extension to L. This is not the standard terminology, but agrees with that used by
Ahlfors in [1]. Thus for 0 <k <1, a k-quasiconformal mapping is one whose
maximal dilatation does not exceed (1+k)/(1—k). Ahlfors has proved the fol-
lowing result [1, p. 29].

THEOREM A. Suppose that 0< k<1, |c—1|<k and y=1Imz. If f is mero-
morphic and locally univalent in U and such that
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Jor all ze U and some t >0, then f is univalent in U and has a k-quasiconformal
extension to C.

The case ¢ =1 is the half-plane version of the well-known criterion of Nehari
[4] and Ahlfors and Weill [2]. As Ahlfors remarks [1, p. 29], the criterion (1.1),
depending as it does on establishing that the values of y2S(f, z) lie in a variable
disk, seems too complicated to be useful. Ahlfors let r - o in (1.1) and asked if
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