ANALYTIC MULTIPLIERS OF BERGMAN SPACES

K. R. M. Attele

Basics and introduction. Let /¥ be a nonempty region in the complex plane
and let LP(W) be the usual Lebesgue p-space of complex functions with domain
W, relative to the Lebesgue two-dimensional area measure dm. For 0 < p < oo, let
the Bergman p-space be defined by LI(W) = LP(W)NH (W), where H(W) is the
space of analytic functions on W. For fe L)(W) let

1/p
171, = (SW |f|”a’m> if 0<p<oo

= sup | f(z)| if p=oo.
ze W

The class L7 (W) of bounded analytic functions on W is usually denoted by
H®(W). Let 0< p=oco and let [f,} be a Cauchy sequence in LJ(W). Then by
using a theorem of Hardy and Littlewood ([8], Chapter 3, Lemma 3.7), one
deduces the existence of fin H (W) such that f, - f uniformly on compact sets.
It follows that if p =1 then LZ (W) is a Banach space, and that if 0 < p <1 then
L2(W) is an F-space.

L:(W) is a Hilbert space, with the inner product {f, g)= | fg dm. For each
w e W there exists a unique k,, in L2(W) such that f(w) = | fk, dm for each f
in L2(W). This k,, is called the reproducing kernel associated with w. Let D
denote the unit disc. When W = D, we have

1 1
kw =TT 2
= =wy?
for zeD and we D. Let P be the orthogonal projection from L*(W) onto
L2(W), so that

PN =\ [Edm.

Taking this as the definition of P(f) for each fin L?(D), Zaharjuta and Judovic
[16] (also see [4]) proved that P projects L?(D) onto LE(D) continuously for
1 < p<o. An immediate consequence would be that the dual of LZ(D) can be
identified with LI(D), where 1< p<oand 1/p+1/g=1.

The map P does not project L!(D) to LL(D) continuously. However L'(D) can
be continuously projected onto LL(D) ([3]). In fact, it is not hard to see that
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