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1. Introduction and summary. In this paper we are dealing with Jonquiére’s
function (cf. [10, p. 33], [15, p. 364], [18, p. 280]) defined by its power series

() J2):=2n"2", k=Koti-xeC
1

for |z| <1; by analytic continuation it is seen to be holomorphic in the cut plane
) C*:={zeC|If Rez=1, then Im z #0}.

If k= k is a positive integer, then f} is connected with the geometric series by the

simple relation
d\' 1
f x(z) = <Z d—z> m

[14, p. 7, problem 46]. Moreover, Jonquiére’s function is of some significance in
various parts of mathematics and physics. For instance, it occurs in analytic
number theory [8] as a generalization of Riemann’s {-function, in summability
theory concerning equivalence problems for Césaro and certain discontinuous
Riesz means [13, ch. IV, 3], and in research on the structure of polymers [17].
Questions in Riesz summability, especially, require the number and the location
of the zeros of f, in C* when « is real. The first complete result for this case is due
to A. Peyerimhoff [12] stating that all zeros in C* are real and =0. Moreover,
they have order one and their exact numberis k+1if k<k=k+1, ke Ny, and 1
if k= 0. Different and modified proofs as well as the dependence of the zeros on
the real parameter « were given in a series of papers [2, 3, 4, 5, 6, 7, 11, 12, 16,
19]. In continuation of these investigations we ask the following questions.

(i) In case of real k, how are the zeros distributed on the negative real axis if «
becomes large?

(ii) What can be said about the zeros of f, when « is complex?

In view of the close relation of f, with Riemann’s ¢-function (observe that
f(—=1) =2 =1)¢(—«)) the second question without any restriction for
includes the problem of finding all complex zeros of ¢. Fornberg and Koélbig [1]
investigated the zeros of f,(x) in the half-plane {xeC|Rex <0}, for fixed
x € (—1,1). Their considerations are restricted to the behaviour of these zeros
when x — 0 and x — 17. The latter case is used to get a numerical approach to the
zeros of the ¢-function. We are interested in the zeros of f,(z) in the z-plane for
fixed « € C. Treating the first question above, it turns out that most of the argu-
ments used there are also valid for complex «, and that we can obtain good
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