THE σ -REGULAR REPRESENTATION OF $\mathbb{Z} \times \mathbb{Z}$

Wesley E. Mitchell

Let Z denote the group of integers. There exist multipliers σ on $Z \times Z$ such that the group extension of $Z \times Z$ by σ is a non-Type I group. In fact, the σ -regular representation of such a lattice group is a Type II₁ factor; the consequences of this fact were investigated by Pukanszky in [5]. The main result of this paper is the existence of decompositions of the σ -regular representation of $Z \times Z$ with respect to an infinite family of mutually disjoint measures. The integrands in the decompositions are induced irreducibles; furthermore, they can be canonically chosen so that the restrictions to two given normal subgroups are associated with Lebesgue measure quasi-orbits on tori with arbitrary finite relatively prime multiplicities.

Let G be a locally compact group, T the circle group. A multiplier (or cocycle) on G is a Borel function $\sigma: G \times G \to T$ satisfying $\sigma(a, b) \sigma(ab, c) = \sigma(a, bc) \sigma(b, c)$ and $\sigma(a, e) = \sigma(e, a) = 1$ for all $a, b, c \in G$, where e is the identity of G. Two multipliers σ and σ' are similar if there is a Borel $\beta: G \to T$ such that $\sigma'(a, b) = \beta(a)\beta(b)\beta(ab)^{-1}\sigma(a, b)$ for all a, b. A multiplier similar to unity is called a coboundary. For $G = \mathbb{Z} \times \mathbb{Z}$, we find that every multiplier is similar to one of the form $\exp(iB)$, where B is a real bilinear form on $G \times G$. This follows from [4, Theorem 9.6] and the fact that every multiplier on a cyclic group is a coboundary. For convenience, we will adopt the following conventions. Elements of G will be denoted either by n or by (p, q), with subscripts as needed. We regard T as $R/2\pi\mathbb{Z}$, elements typically denoted by u, w. We view elements of T^2 as vectors V or (V_1, V_2) , with group action written additively. Finally, let e_1, e_2 be the usual basis vectors in the real plane, $e_3 = e_1 + e_2$; $\langle \cdot, \rangle$ will denote the usual inner product.

For a given multiplier σ on $G = \mathbb{Z} \times \mathbb{Z}$, define the σ -regular representation R^{σ} by the formula $(R_g^{\sigma}f)(g') = \sigma(g',g)f(g'g)$ for $f \in L^2(G)$. If $F: L^2(G) \to L^2(T^2)$ is the Fourier transform, define $\hat{R}^{\sigma} = FR^{\sigma}F^{-1}$. We wish next to define an action on \hat{R}^{σ} by certain homomorphisms of T^2 . To this end, let $M = \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix} \in SL(2,\mathbb{Z})$. It is well known that M induces a measure-preserving homomorphism of T^2 , and hence a unitary operator V_M on $L^2(T^2)$, given by $(V_{M\phi})(v) = \phi(Mv)$. We will say M acts on \hat{R}^{σ} by $M \cdot \hat{R}^{\sigma} = V_M \hat{R}^{\sigma} V_M^{-1}$. To compute the effect of this action, fix a real matrix $A = \begin{pmatrix} t_1 & t_2 \\ t_3 & t_4 \end{pmatrix}$, and let σ be given by $\sigma(n_1, n_2) = \exp(i\langle n_1, An_2 \rangle)$. Then, for all $\phi \in L^2(T^2)$,

$$\hat{R}_n^{\sigma}\phi(v) = c(n) \exp(-i\langle v, n \rangle) \phi(v + An)$$

and

Received August 12, 1983. Final revision received June 11, 1984. Michigan Math. J. 31 (1984).