THE RANGE OF THE RESIDUE FUNCTIONAL FOR THE CLASS S_n

Stephen M. Zemyan

Let *U* denote the unit disk $\{z: |z|<1\}$. For $0 , the class <math>S_p$ will consist of all functions g(z) which are meromorphic and univalent in *U* and in addition are normalized so that g(0) = 0, g'(0) = 1 and $g(p) = \infty$. Define the set

$$\Omega_n = \{a : a = \operatorname{Res}_{z=n} g(z), g \in S_n\}.$$

In this note we prove the following:

THEOREM.
$$\Omega_p = \{-p^2(1-p^2)^{\epsilon} : |\epsilon| \leq 1\}.$$

Proof. The proof consists of a mutual inclusion argument.

Suppose that $a \in \Omega_p$. Then $a = \operatorname{Res}_{z=p} g(z)$ for some $g(z) \in S_p$. Let S denote the class of all functions f(z) which are analytic and univalent in U and are normalized so that f(0) = 0 and f'(0) = 1. Then a short argument shows that the function

$$f_c(z) = \frac{cg(z)}{c + g(z)} \quad (-c \notin g(U))$$

belongs to S and that $a = -f_c^2(p)/f_c'(p)$. We shall apply the Golusin Inequalities [1, p. 898] to the function $f_c(z)$. For each $f \in S$, we have

$$\left|\sum_{n=1}^{N}\sum_{k=1}^{N}\lambda_{n}\bar{\lambda}_{k}\log\left(\frac{f(z_{n})-f(z_{k})}{z_{n}-z_{k}}\frac{z_{n}z_{k}}{f(z_{n})f(z_{k})}\right)\right| \leq \sum_{n=1}^{N}\sum_{k=1}^{N}\lambda_{n}\bar{\lambda}_{k}\log\left(\frac{1}{1-z_{n}\bar{z}_{k}}\right),$$

where the z_n (0<| z_n |<1) are distinct and the λ_n are arbitrary complex numbers. For $z_k = z_n$, the quotient is interpreted as a derivative. We apply these inequalities with k=n=N=1, $\lambda_1=1$ and $z_1=p$ to obtain the inequality

(1)
$$\left|\log \frac{p^2 f'(p)}{f^2(p)}\right| \leq \log \frac{1}{1-p^2}.$$

This inequality was originally discovered by Grunsky [2]. Setting $f(z) = f_c(z)$ in (1), we obtain

$$|\log(-a) - \log p^2| \le \log \frac{1}{1 - p^2}.$$

It follows that

$$\log(-a) = \log p^2 + \epsilon \log(1 - p^2)$$

where $|\epsilon| \le 1$. Exponentiating and multiplying by -1, we obtain $a = -p^2(1-p^2)^{\epsilon}$, which was what we wanted.

Received June 6, 1983.

Michigan Math. J. 31 (1984).