ON COMPACT COMPLETELY BOUNDED MAPS OF C*-ALGEBRAS

Tadasi Huruya

1. Introduction. A C^* -algebra is said to be subhomogeneous if all its irreducible representations are on Hilbert spaces of dimension at most some positive integer. In the proof of [5: Theorem 3] we proved that if a C^* -algebra A is infinite dimensional and a C^* -algebra B is not subhomogeneous, then there exists a compact linear map of A into B which is not completely bounded and which is not a linear combination of positive linear maps.

In this paper we show that if ϕ is a map of a C^* -algebra into a nuclear C^* -algebra such that there exists a sequence of linear maps of finite rank converging to ϕ in the completely bounded norm, then ϕ is a linear combination of compact, completely positive maps. We also study, in the completely bounded norm, the closure of the set of linear maps of finite rank between some C^* -algebras. As an application of a result of Smith [8: Theorem 2.8], we prove that if on the algebraic tensor product $A \odot B$ of two C^* -algebras A and B, the greatest cross norm γ is equivalent to the projective C^* -cross norm, then either A or B is finite dimensional.

2. Preliminaries. For C^* -algebras A and B, let B(A, B), K(A, B) and F(A, B) denote the set of bounded linear maps of A into B, the set of compact linear maps of A into B and the set of linear maps of finite rank of A into B, respectively.

Let ϕ be a map in B(A, B). It is possible to define associated maps $\phi \otimes \operatorname{id}_n \colon A \otimes M_n \to B \otimes M_n$, and ϕ is said to be completely positive if each $\phi \otimes \operatorname{id}_n$ is positive, and completely bounded if $\sup_n \|\phi \otimes \operatorname{id}_n\| < \infty$. This quantity is called the completely bounded norm $\|\phi\|_{\operatorname{cb}}$ when it exists. If ϕ is completely positive, $\|\phi\|_{\operatorname{cb}} = \|\phi\|$. Let CB(A, B) denote the set of completely bounded maps of A into B. For ϕ in B(A, B), if there exist completely positive maps ϕ_i of A into B such that $\phi = \phi_1 - \phi_2 + i(\phi_3 - \phi_4)$, then ϕ is said to have a completely positive decomposition. If a net $\{\phi_\beta\}$ in CB(A, B) converges to ϕ in the norm $\|\cdot\|_{\operatorname{cb}}$, we write $\operatorname{cb-lim}_{\beta} \phi_{\beta} = \phi$.

Let $A \otimes_{\alpha} B$ denote the completion of the algebraic tensor product $A \odot B$ under a norm α . In particular $A \otimes_{\max} B$ and $A \otimes_{\min} B$ mean the projective and injective C^* -tensor products, respectively [9: Chapter IV, Section 4].

A C^* -algebra A is said to be nuclear if for every C^* -algebra B the C^* -norm on the algebraic tensor product $A \odot B$ is uniquely determined [2].

For the theory of C^* -algebras, we refer to the book of Takesaki [9].

3. Nuclear range algebras. The following lemma is perhaps known. For completeness we include the proof.

Received February 25, 1983. Revision received May 31, 1983. Michigan Math. J. 30 (1983).