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Introduction. The sequence of iterates of a holomorphic map of the unit disc
D into itself with no fixed points in D was studied by J. Wolff [7] and A. Denjoy
[1]. They showed that for such a function the iterates converge, uniformly on
compact subsets of D, to a unimodular constant. In Section 1 of this paper we
consider the generalization of this question to holomorphic, fixed point free self-
maps of the unit ball in CV. We will show that in this case also the sequence of
iterates converges, uniformly on compact subsets of the ball, to a constant of
norm 1. The basic tool we use is a theorem of W. Rudin [4] which characterizes
the fixed point set of a holomorphic map of the ball into itself as an affine subset
of the ball.

The one variable Denjoy-Wolff theorem is often stated to include holomor-
phic self-maps of the disc which fix one point in the disc, but which are not con-
formal automorphisms of the disc. In this case the entire sequence of iterates still
converges to a constant, the interior fixed point. In Section 2 we consider the
iteration of maps with fixed points in the ball in higher dimensions.
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1. Maps with no interior fixed points. Let B, or By if we wish to indicate the
dimension explicitly, be the open unit ball in C%, in the Euclidean metric. Denote
by H(B; B) the family of all holomorphic maps of B into itself. For f € H(B; B)
we denote the iterates of f by f,:

Si=1, Jnv1=Stn n=1,2,3,...

Since H(B; B) is a normal family, every sequence of iterates of f contains a sub-
sequence which converges, uniformly on compact subsets of B. We will examine
the possible subsequential limits of { f,,} according to the fixed point character of
f. Note that a subsequential limit of iterates of f € H(B; B) need not belong to
H(B; B). However the following lemma shows that this can only happen if the
limit is a constant map of norm 1.

LEMMA 1.1. Let F: B— B be holomorphic. Then either F(BYSBor F(z)=¢
in @B, for all 7 in B.

Proof. Suppose there is a z; in B with F(zy) = { €3B. Set G(z) = (1+{z, {))/2,
so G belongs to A(B), the algebra of functions holomorphic in B and continuous
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