TORSION INVARIANTS AND ACTIONS OF FINITE GROUPS

Douglas R. Anderson

Dedicated to the memory of my friend and colleague David L. Williams.

Let G be a finite group and X be a G-CW complex in the sense of T. Matumoto [5] or S. Illman [4]. If X is a finite G-CW complex (i.e., X has only finitely many G-cells), then Illman [4; Section 2] gives a geometric definition for an equivariant Whitehead group $\operatorname{Wh}_G(X)$. Furthermore, he shows [4; Theorem 1.4] that if G is abelian and each component of $X^H = \{x \in X \mid hx = x \text{ for all } h \in H\}$ is simply connected for all subgroups H of G, then $\operatorname{Wh}_G(X)$ is isomorphic to a direct sum of ordinary (i.e., algebraically defined) Whitehead groups. A similar result has been obtained by M. Rothenberg [6; Theorem 1.8].

In a somewhat parallel vein, J. Baglivo [1] considered the following problem. Let X be a G-CW complex which is G-dominated by a finite G-CW complex Y. Does X have the G-homotopy type of a finite G-CW complex? In the approach taken in [1], Baglivo adopts the running hypotheses that $X^G \neq \emptyset$ and that X^H is connected for all subgroups $H \subset G$. Under these conditions, she shows that there exist groups, denoted by N(H)/H in [1], and elements $w_H(X) \in \tilde{K}_0 Z(N(H)/H)$ such that X has the homotopy type of a finite G-CW complex if and only if all the $w_H(X) = 0$.

Let X_{α}^{H} be a subcomplex of X^{H} . (In this paper X_{α}^{H} will actually be a connectedness component of X^{H} or a union of such.) Let $G_{\alpha} = \{g \in G \mid g(X_{\alpha}^{H}) = X_{\alpha}^{H}\}$ and $N(H) = \{g \in G \mid gHg^{-1} = H\}$ be the normalizer of H. In this paper, we introduce a group $\Gamma(X_{\alpha}^{H}, G)$ which fits into a short exact sequence

$$1 \longrightarrow \pi_1(X_\alpha^H) \longrightarrow \Gamma(X_\alpha^H, G) \longrightarrow G_\alpha \cap N(H)/H \longrightarrow 1$$

and use these groups to generalize the results of [1], [4], and [6]. In particular, we establish the following theorems:

THEOREM A. Let G be a finite group and X be a finite G-CW complex. Let $\{H_s \mid s \in S\}$ be a set of representatives for the subgroups of G that are contained in an isotropy subgroup of the action of G on X. Let $\{X_{\alpha}^{H_s} \mid \alpha \in A_s\}$ be a set of representatives for the connectedness components of X^{H_s} . Then there exists an isomorphism

$$\Phi: Wh_G(X) \longrightarrow \sum_{s \in S} \sum_{\alpha \in A_s} Wh \Gamma(X_{\alpha}^{H_s}, G)$$

THEOREM B. Let G be a finite group and X be a G-CW complex. Let $\{H_s \mid s \in S\}$ be a set of representatives for the set of isotropy subgroups of the action of G on X. Let $\{X_{\alpha}^{H_s} \mid \alpha \in A_s\}$ be a set of representatives for the connectedness components of $X_s^{H_s}$.

Received February 10, 1980. Revision received September 22, 1980. Partially supported by the N.S.F. under grant number MCS-7902523. Michigan Math J. 29 (1982).