BOUNDDED PROJECTIONS AND THE GROWTH OF HARMONIC CONJUGATES IN THE UNIT DISC

Allen L. Shields and D. L. Williams

This paper is dedicated by the first author to the memory of the second author. David Leroy Williams died unexpectedly on March 9, 1980; he was 42 years old. He received his Ph.D. in 1967 at the University of Michigan, under the direction of the first author. A fine mathematician, a fine friend.

1. Introduction. Let \(u \) be a harmonic function in the open unit disc \(\Delta \) and as usual denote \(M_\infty(u, r) = \sup\{|u(re^{i\theta})| : -\pi < \theta \leq \pi\} \) for \(r < 1 \). If \(u \) is bounded, elementary estimates on the conjugate Poisson kernel show that the harmonic conjugate \(\bar{u} \) satisfies the growth condition \(M_\infty(\bar{u}, r) = O(\log(1/(1-r))) \). Moreover the analytic function \(\log(1/(1-z)) \), whose imaginary part is bounded in \(\Delta \), proves that this estimate is best possible, that is, \(\log(1/(1-r)) \) cannot be replaced with a function of slower growth. On the other hand, Hardy and Littlewood [4], [5], [3, p. 83] showed that if \(M_\infty(u, r) = O((1/(1-r)^\alpha)) \), \(\alpha > 0 \), then \(M_\infty(\bar{u}, r) \) satisfies the same growth condition. We fill the gap between these two results.

More precisely, for \(x \geq 0 \) let \(\psi(x) \) be a positive increasing function for which there exists \(\alpha > 0 \) such that \(\psi(x) = O(x^\alpha) \), \(x \to \infty \). Assuming some mild regularity conditions on \(\psi \), we show in Section 3 that if \(M_\infty(u, r) = O(\psi(1/(1-r))) \), then \(M_\infty(\bar{u}, r) = O(\tilde{\psi}(1/(1-r))) \) where \(\tilde{\psi}(x) = \frac{x}{2} \int_{1/2}^x t^{-1} \psi(t) \, dt \). We also show that this estimate is best possible by constructing a harmonic function \(u \) on \(\Delta \) such that \(M_\infty(u, r) = O(\psi(1/(1-r))) \) and \(M_\infty(\bar{u}, r) \geq \tilde{\psi}(1/(1-r)) \), \(r \in [0, 1) \).

To interpret these results, one needs to know certain facts about the ratio \(\tilde{\psi}/\psi \). We shall give a detailed discussion in Section 2. Here we make some brief observations. First, if \(\psi(x) \) grows like \(x^\alpha \) then so does \(\tilde{\psi}(x) \), and one obtains the Theorem of Hardy and Littlewood. However, if \(\psi \) grows more slowly than any positive power of \(x \), then, generally speaking, \(\tilde{\psi} \) grows faster than \(\psi \). For example, if \(\psi(x) = \log(x+2) \), then \(\tilde{\psi}(x) \) grows like \((\log(x+2))^2 \). If \(\psi(x) = 1 \), then \(\tilde{\psi}(x) \) grows like \(\log x \); thus we recapture the bounded case mentioned above.

The above discussion remains valid if we replace \(M_\infty(u, r) \) by

\[
M_1(u, r) = \frac{1}{2\pi} \int_{-\pi}^{\pi} |u(re^{i\theta})| \, d\theta
\]

throughout. Of course, for \(M_p(u, r) = [(2\pi)^{-1} \int |u(re^{i\theta})|^p \, d\theta]^{1/p} \), \(1 < p < \infty \), the well-known theorem of M. Riesz [3, p. 54] says that \(M_p(u, r) = O(\psi(1/(1-r))) \) implies \(M_p(\bar{u}, r) = O(\psi(1/(1-r))) \). Therefore, in this paper we shall be concerned only with the means \(M_\infty(u, r) \) and \(M_1(u, r) \). However the referee has pointed out to us that Theorem 1 remains valid for a rather general class of norms, namely for the norm in any "homogeneous Banach space" in the sense of Y. Katznelson. This is discussed briefly in Section 7 at the end of the paper, where the relevant definitions and references are given.

Received November 26, 1980. Revision received June 9, 1981.