A NOTE ON TURAN’S METHOD
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1. STATEMENT OF RESULTS

N
Let s, = 2 b,z., where the b, and the 2, are complex numbers, and

n=1
v =0, 1, 2, .... A question of current interest is the size of |s,| in the special
case that b, > 0 and |z,| = 1 for all n. In this connection, Leenman and Tijdeman
[4] have shown that
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On the other hand, by Dirichlet’s theorem on uniform approximation there is
arg z

n

=—for 1 = n = N. For this v we have
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Re 2} = cos (v arg z,) = cos -3— = -2—, so that
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It is easy to see that we may have s, = 0 for 1 = v = N — 1 (take 2z, = e(n/N),
b, = 1 for 1 = n = N), so the range of v in (1) is essentially as short as one
may consider. Furthermore, |s,| = s, for all v, so we cannot hope to improve
on (2) by more than a constant if we consider longer ranges of v. Thus the two
estimates (1) and (2) represent the extreme situations. In what follows we obtain
(1) and (2) by a unified method which gives good lower bounds for ranges
1 = v = K of intermediate length as well.

N
THEOREM 1. Lets, = Y b,2, where b, > 0 and |z,| = 1 for all n. For
n=1

agivenr,r=1, 2,3, ..., we have
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From this we deduce
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