A NOTE ON TURÁN'S METHOD

S. M. Gonek

1. STATEMENT OF RESULTS

Let $s_{\nu} = \sum_{n=1}^{N} b_{n} z_{n}^{\nu}$, where the b_{n} and the z_{n} are complex numbers, and $\nu = 0, 1, 2, \ldots$ A question of current interest is the size of $|s_{\nu}|$ in the special case that $b_{n} > 0$ and $|z_{n}| = 1$ for all n. In this connection, Leenman and Tijdeman [4] have shown that

(1)
$$\max_{1 \le \nu \le 2N} |s_{\nu}| \ge \frac{s_0}{2\sqrt{N}}.$$

On the other hand, by Dirichlet's theorem on uniform approximation there is a ν , $1 \le \nu \le 6^N$, such that $\left\|\nu \frac{\arg z_n}{2\pi}\right\| \le \frac{1}{6}$ for $1 \le n \le N$. For this ν we have $\operatorname{Re} z_n^{\nu} = \cos\left(\nu \arg z_n\right) \ge \cos\frac{\pi}{3} = \frac{1}{2}$, so that

(2)
$$\max_{1 \le \nu \le 6^N} |s_{\nu}| \ge \frac{s_0}{2}.$$

It is easy to see that we may have $s_{\nu}=0$ for $1\leq\nu\leq N-1$ (take $z_n=e(n/N)$, $b_n=1$ for $1\leq n\leq N$), so the range of ν in (1) is essentially as short as one may consider. Furthermore, $|s_{\nu}|\leq s_0$ for all ν , so we cannot hope to improve on (2) by more than a constant if we consider longer ranges of ν . Thus the two estimates (1) and (2) represent the extreme situations. In what follows we obtain (1) and (2) by a unified method which gives good lower bounds for ranges $1\leq\nu\leq K$ of intermediate length as well.

THEOREM 1. Let $s_v = \sum_{n=1}^{N} b_n z_n^v$, where $b_n > 0$ and $|z_n| = 1$ for all n. For a given r, r = 1, 2, 3, ..., we have

(3)
$$\max_{1 \leq \nu \leq 2 \binom{N+r-1}{r}} |s_{\nu}| \geq s_0 \left(2 \binom{N+r-1}{r} \right)^{-1/2r}.$$

From this we deduce

Received October 19, 1979.

Michigan Math J. 28 (1981).