THE THEORY OF MOTION GROUPS

Deborah L. Goldsmith

INTRODUCTION

In 1962 in his Ph.D. thesis, David M. Dahm defined the group of motions with compact support of the compact subspace N in the manifold M to be the group of essentially different ways of continuously moving N in M, so that at the end of the motion, N has been returned to its original position. This paper is mostly my exposition of Dahm's unpublished work.

It was the idea of Hurwitz (see [18]), and later of Fox (see [12]), to envisage a braid (see Figure 1) as a continuous 1-parameter family of changing configurations of n distinct points in the xy-plane, where at each time t_0 , the configuration is given by the intersection of the braid with the plane at height $z = t_0$. Thus, the motion group $\mathcal{M}(M,N)$ has its origins in the Artin braid group ([1], [2], [3] and [4]).

The sections of this paper are

- 1. The Braid Groups
- 2. Motion Groups Defined
- 3. Properties of Motion Groups
- 4. The Dahm Homomorphism
- 5. The Group of Motions of a Collection of n Unknotted, Unlinked Circles in \mathbb{R}^3

The background and motivation of the braid groups is discussed in Section 1. In Section 2 I define and give examples of motion groups. Section 3 is mostly a list of short exact sequences containing the group of motions as a term, from which this group may be computed. Section 4 defines a homomorphism

$$D:\mathcal{M}(M,N)\to \operatorname{Aut}\left(\pi_{_1}(M-N)\right)$$

from the group of motions of N in M, to the automorphisms of $\pi_1(M-N)$ induced at the end of the motion.

The main result of the paper, in Section 5, is the following calculation: Let $C = C_1 \cup ... \cup C_n \subset \mathbb{R}^3$ be a collection of n unknotted, unlinked circles in \mathbb{R}^3 . Let $F(x_1,...,x_n)$ denote the free group on n generators, x_i , i=1,...,n; note that $\pi_1(\mathbb{R}^3-C)\simeq F(x_1,...,x_n)$.

THEOREM 5.4. The group of motions $\mathcal{M}(\mathbb{R}^3, \mathbb{C})$ of the trivial n-component link \mathbb{C} in \mathbb{R}^3 is generated by the following types of motions:

Received December 14, 1977. Revision received October 5, 1978.

Michigan Math. J. 28 (1981).