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INTRODUCTION

We describe four basic operations (I-operations) involving the connected sum
construction with which PL involutions of 3-manifolds can be built up from
involutions of simpler 3-manifolds. The main result (Theorem 1) is that every
PL involution of a compact 3-manifold arises from involutions on its prime summands
by repeated application of these four I-operations. It is well-known that every
compact 3-manifold can be uniquely expressed (up to order) as the connected sum
of prime 3-manifolds in normal form. Thus the study of PL involutions of compact
3-manifold is now reduced to problems involving PL involutions of prime 3-manifolds.

Section 1 is devoted to the descriptions of the I-operations and stating the
main results. An application of Theorem 1 to double-coverings of S® branched
over a link is also given here. Theorem 1 has also been applied to P® # P2 to
show that there exist exactly seven distinct nonconjugate involutions on
P® # P® (see [5]). Section 2 contains the proof of Theorem 1. Finally, in Section
3, we prove a basic lemma for splitting 3-manifolds with involution along disks
and suggest a further reduction for PL involutions of compact irreducible 3-manifolds
with boundary with respect to the multi-disk sum operation.

1. STATEMENT OF RESULTS

We work exclusively in the PL category throughout this paper. All orientable
3-manifolds are assumed to be oriented. We let M~ denote the 3-manifold obtained
from an oriented 3-manifold M = M™ by reversing its orientation. Recall that
the connected sum M, # M, of two connected 3-manifolds M, and M, is obtained
by removing the interior of a closed 3-cell from the interior of each and identifying
the resulting 2-sphere boundaries by a homeomorphism (orientation reversing if
both M, and M, are oriented). A compact 3-manifold M is said to be prime if
it cannot be written as a connected sum of two 3-manifolds, each distinct from
S2. Recall that S® is the identity element for this operation. According to the
unique decomposition theorem of Kneser [7] and Milnor [11] (see Hempel [4]),
every compact 3-manifold can be written uniquely (up to order) as a connected
sum of prime 3-manifolds in normal form (in the normal form S' X S? is allowed
to appear as a summand only when M is orientable). It follows that a compact
3-manifold can be built up in an essentially unique way from prime 3-manifolds.
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