FUNCTIONAL INTEGRALS RELATED TO A NONCONTRACTION SEMIGROUP

T. F. Lin

1. INTRODUCTION

Since the controversial Feynman path integral (see [3,6]) appeared, functional integral representations for solutions of certain initial value problem $u_{\iota} = Au + vu$ have been extensively studied. There are essentially two types of integral representations. In one type of representation, A is the infinitesimal generator of a contraction semigroup S_{ι} such that $S_{\iota}1=1$, $\|S_{\iota}\|=1$. The measure involved in the integration is a probability measure which is associated with a diffusion process (see [5,1]). For generalization to the nonhomogeneous case, see [10]. In other types of representations, A is associated with a semigroup of operators S_{ι} such that $S_{\iota}1=1$ and $\|S_{\iota}\|\equiv c>1$. The integration is carried out with respect to a finitely additive set function (see [7,2]). We will study here a type where A generates a semigroup of operators S_{ι} such that $S_{\iota}1=1$ and $\|S_{\iota}\|\leq e^{\alpha \iota}$ for some $\alpha\in R^{+}$. The measure to be used in the integration is a measure, perhaps complex or signed, with total measure 1. Note that the condition $S_{\iota}1=1$ is indispensable in the construction of measures or set functions on function spaces. The difference between the above three cases is the norm of S_{ι} .

Throughout this article, unless otherwise specified, X denotes a compact metric space with metric ρ , C = C(X) denotes the space of all real continuous functions on X with supremum norm and A denotes a closed linear operator on C with domain $\mathcal{D}(A)$ dense in C and containing all constant functions.

It will be shown that if A satisfies the following conditions:

$$(1.1) Af(x_0) \le \alpha f(x_0) \text{ if } f(x_0) = ||f||, \text{ where } \alpha \in \mathbb{R}^+,$$

(1.2)
$$\lambda - A \text{ maps } \mathcal{D}(A) \text{ onto } C \text{ for each } \lambda > \alpha$$
,

$$(1.3) A1 = 0,$$

then the solution of the initial value problem

(1.4)
$$\begin{cases} u_t(t,x) = Au(t,x) + v(x)u(t,x), \\ u(0,x) = f(x), \end{cases}$$

 $0 \le t \le T < \infty$, $v \in C$, $f \in \mathcal{D}(A)$, has a functional integral representation. The solution can also be expressed as

Received October 12, 1976. Revision received November 30, 1977.

Michigan Math. J. 26 (1979).