APPROXIMATION OF ANALYTIC FUNCTIONS SATISFYING A LIPSCHITZ CONDITION

A. Matheson

1. Let λ_{α} , $0 < \alpha < 1$, denote the class of functions f analytic in the open unit disk, continuous in the closed disk for which $t^{-\alpha}\omega(t) \to 0$ as $t \to 0$, where ω denotes the modulus of continuity of the boundary function of f.

Defining

(1.1)
$$\|f\|_{\alpha} = \|f\|_{\infty} + \sup_{\alpha} t^{-\alpha} \omega(+)$$

yields a Banach algebra norm on λ_{α} . A theorem of Hardy and Littlewood [7, I, p.263] guarantees that $f \in \lambda_{\alpha}$ if and only if

(1.2)
$$|f'(z)| = o((1 - |z|)^{\alpha - 1})$$
 as $|z| \to 1^-$.

This theorem yields an equivalent Banach algebra norm on λ_{α} by setting

(1.3)
$$\|\mathbf{f}\| = \|\mathbf{f}\|_{\infty} + \sup \{ (1 - |\mathbf{z}|)^{1-\alpha} |\mathbf{f}'(\mathbf{z})| \colon |\mathbf{z}| < 1 \}.$$

The norm given by (1.3) will be used exclusively in the sequel.

Every function $f \in \lambda_{\alpha}$ has a canonical factorization f = FG, where F is an outer function and G is an inner function. The purpose of this paper is to prove theorem A below, which states, in effect, that a function f in λ_{α} can be approximated by functions in λ_{α} with the same inner factor and with boundary zeros of arbitrarily high order.

THEOREM A. Let $f \in \lambda_{\alpha}$ and let E be a closed set on the unit circle such that f(z) = 0 for all $z \in E$. Let M > 0 be given. Then for every $\varepsilon > 0$ there exists a function $f_{\varepsilon} \in \lambda_{\alpha}$ such that

- (i) the inner factors of f and f, coincide,
- (ii) $\|\mathbf{f} \mathbf{f}_{\varepsilon}\| < \varepsilon$, and

(iii)
$$|f_s(z)| = O(\operatorname{dist}^M(z,E))$$
 as dist $(z,E) \to 0$.

Theorem A can be used to give a characterization of the closed ideals in λ_{α} analogous to the Rudin-Beurling characterization of the closed ideals in the disc algebra [5]. The argument is similar to that of Korenblum [2] and is presented in [4].

The principal difficulty in the proof of Theorem A is isolated in the next theorem.

THEOREM B. Let $f \in \lambda_{\alpha}$ be of the form F^PG where F is outer, G is inner, p > 1 and $FG \in \lambda_{\alpha}$. Let Γ be an open subset of the unit circle such that f vanishes at the endpoints of each component interval of Γ . Define

Received September 19, 1977.

Revision received February 28, 1978.

Michigan Math. J. 25 (1978).