EXTREME POINTS OF THE UNIT BALL OF THE BLOCH SPACE \mathscr{D}_0

Joseph A. Cima and Warren R. Wogen

1. INTRODUCTION

Let Δ denote the open unit disc in the complex plane \mathbb{C} , and let Γ denote the boundary of Δ . If f is a function holomorphic in Δ , define M (f) by

$$M(f) = \sup \{|f'(z)|(1-|z|^2) : z \in \Delta\}.$$

The Bloch space \mathscr{B} consists of those holomorphic functions f for which M(f) is finite. The norm ||f|| = |f(0)| + M(f) makes \mathscr{B} a Banach space. The set of f in \mathscr{B} for which $\lim_{|z|\to 1} |f'(z)|(1-|z|^2)=0$ is a closed subspace of \mathscr{B} , denoted by \mathscr{B}_0 . There are several characterizations of the functions in the Bloch space, and we refer the reader to [1], [2], [4], and [5]. The dual space of \mathscr{B}_0 is linearly homeomorphic with a Banach space I of functions holomorphic on Δ [1]. In fact,

$$I = \left\{ g: \int_{0}^{1} \int_{0}^{2\pi} |g'(re^{i\theta})| r dr d\theta < \infty \right\}.$$

Further, the second dual of \mathcal{B}_0 is isometrically isomorphic to \mathcal{B} . Alaoglu's Theorem and the Krein-Milman Theorem then imply that the unit ball of \mathcal{B} has extreme points. We show that the unit ball of \mathcal{B}_0 also has extreme points. The principal result of this paper is a characterization of the extreme points of the unit ball of \mathcal{B}_0 .

We list here a theorem which plays a fundamental role in later proofs.

THEOREM A. Let G (x, y) be a convergent real power series such that G (0,0) = 0 and G (0, y) = $\sum_{n=s}^{\infty} b_n y^n$, where $s \ge 1$ and $b_s \ne 0$. Then there are power series Ω (x, y), A_i (x)(i = 0, 1, ..., s-1) such that

$$G(x,y) = (y^{s} + A_{s-1}(x) y^{s-1} + ... + A_{0}(x)) \Omega(x,y),$$

and $\Omega(0,0) \neq 0$.

Theorem A is a special case of the real analytic version of the Weierstrass Preparation Theorem (cf., e.g., [7, p. 145]). A C^{∞} version of this result (the Malgrange-Mather Theorem) can be found in [6, p. 94].

Received November 6, 1976. Revision received February 25, 1977.

Michigan Math. J. 25 (1978).