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In this note among other results we prove the following
THEOREM 1. Letf,€ L' forj=1,2,.... Assume that
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where f (k) = — ft)e ™ dt fork=0,+1,+2,....
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By L” (0 < p =x) we denote the space of equivalence classes of p-absolutely
integrable with respect to the Lebesgue measure complex-valued measurable

functionson [0, 2w] ,and by C,_ the space of 27 -periodic continuous complex-valued
1 27 1/p

functions on [0, 27] . For f € L° we put [|f], = (2—— S If @®)|° dt) forp=1
™
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and (ff]}, = ;T— S |f (t)]® dt for 0 <p < 1. The Hardy spaces H” (1 < p < ») and
o

the Disc Algebra A are defined by
H*={fe L": f(k)=0fork <0}, A={feC, :f(ky=0fork<0}.

In the language of absolutely summing operators Theorem 1 means that the
adjoint of every translation invariant operator from H? into A is 1-absolutely
summing. It is an open question whether every bounded linear operator from
H? into A has 1-absolutely summing adjoint.

Our proof of Theorem 1 is indirect. Our argument uses the duality between
nuclear and bounded operators and Theorem 2 below which asserts that a translation
invariant operator M : A — H? is nuclear if and only if it is p-absolutely summing
for some pwith1>p>0.
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