SEMIGROUPS OF ANALYTIC FUNCTIONS AND COMPOSITION OPERATORS

Earl Berkson and Horacio Porta

Let U be an open set in the complex plane \mathbb{C} . A one-parameter semigroup $\{\phi_t\}$ of holomorphic mappings of U into itself is a homomorphism $t \mapsto \phi_t$ of the additive semigroup of nonnegative real numbers \mathbb{R}^+ into the semigroup (under composition) of all analytic mappings of U into U such that ϕ_0 is the identity map of U and ϕ_t (z) is continuous in (t, z) on $\mathbb{R}^+ \times U$. We also write $\phi(t, z)$

for $\phi_t(z)$, and denote $\frac{\partial \phi(t,\,z)}{\partial t}$ by $\phi_1(t,\,z)$. In this paper we study the collection

 $\mathscr{S}(U)$ of all such one-parameter semigroups on U for U the right half-plane or the open unit disc \triangle , and then apply the results to a treatment of strongly continuous one-parameter semigroups of composition operators on $H^p(\triangle)$, $1 \le p < \infty$.

In Section 1, we show for an arbitrary open set U that if $\{\phi_t\} \in \mathcal{S}(U)$, then there is a unique analytic function G on U (called the infinitesimal generator of $\{\phi_t\}$) such that $\phi_1(t,z) = G(\phi(t,z))$ on $\mathbb{R}^+ \times U$. In Section 2 we characterize and concretely describe the class of all infinitesimal generators for the case where U is the right half-plane. This involves proving the existence of a global solution to the initial value problem $\phi_1(t,z) = G(\phi(t,z))$, $\phi(0,z) = z$ for appropriate analytic functions G (see Theorems (2.6) and (2.13) below). In Section 3, after rephrasing these results so as to characterize the generators for the case where U is Δ , we study the strongly continuous one-parameter semigroups of composition operators on $H^p(\Delta)$, $1 \le p < \infty$, and characterize their infinitesimal generators in Theorem (3.7). For $1 \le p < \infty$, every $\{\phi_t\} \in \mathcal{S}(\Delta)$ gives rise to a strongly continuous semigroup $\{T_t\}$ of composition operators on $H^p(\Delta)$. The point spectrum of the infinitesimal generator of $\{T_t\}$, in certain cases, is taken up in Section 4, where an interplay with logarithmic potentials develops.

Throughout what follows, we denote composition of mappings by \circ and differentiation with respect to z by '.

The authors are indebted to Professor Robert Kaufman for decisive contributions including the framework of Sections 1 and 2.

1. THE INFINITESIMAL GENERATOR OF A SEMI-GROUP OF HOLOMORPHIC MAPPINGS

(1.1) THEOREM. Let U be an open set in \mathbb{C} , and let $\{\phi_t\}$, $t \in \mathbb{R}^+$, be a one-parameter semigroup of holomorphic mappings of U into U. Then there is

Received November 1, 1976.

The first author was supported by a National Science Foundation grant.

Michigan Math. J. 25 (1978).