INTEGRAL REPRESENTATIONS AND DIAGRAMS

E. L. Green and I. Reiner

INTRODUCTION

This article is the outcome of an attempt to study integral representations by diagrammatic techniques. A diagram D is a finite directed graph. Given a field k, a k-representation of D assigns to each vertex α of D a finite dimensional k-space V_{α} , and to each arrow $\alpha \to \beta$ a k-linear transformation $V_{\alpha} \to V_{\beta}$. There are obvious definitions of morphisms of representations, isomorphisms, direct sum, and decomposability. It is clear that the Krull-Schmidt Theorem is valid for representations of diagrams, namely, every representation is expressible as a finite direct sum of indecomposables, unique up to isomorphism and order of occurrence. If there are only a finite number of non-isomorphic indecomposables, we call D of finite representation type.

These concepts were introduced in a fundamental article by Gabriel [9], who proved that a connected diagram D is of finite type if and only if its underlying graph is one of the Dynkin diagrams A_n , D_n , E_6 , E_7 , E_8 . Some time thereafter, a less computational proof of this amazing result was given by Bernstein-Gelfand-Ponomarev [1], using the machinery of Coxeter functors from Lie algebras. Their approach was generalized by Dlab-Ringel [4], [5], who considered representations of a modulated graph \mathscr{M} . By definition, \mathscr{M} consists of a finite directed graph with a skewfield k_α placed at each vertex α , and a (k_β,k_α) -bimodule $_\beta M_\alpha$ attached to each arrow $\alpha \to \beta$. A representation of \mathscr{M} assigns to each vertex α a left k_α -space V_α , and to each arrow from α to β a k_β -homomorphism $_\beta M_\alpha \otimes_{k_\alpha} V_\alpha \to V_\beta$. After imposing a few reasonable hypotheses, Dlab-Ringel determined all modulated graphs of finite type.

A somewhat different approach was followed by Russian mathematicians such as Drozd, Kleiner, Nazarova, and Roiter (see the fundamental Leningrad Proceedings of 1972 [16]). They studied finite partially ordered sets (posets); a representation of a poset S is given by choosing a vector space V over some field k, and assigning to each $\alpha \in S$ a subspace V_{α} of V, so that $V_{\alpha} \subseteq V_{\beta}$ whenever $\alpha \leq \beta$ in S. The work of Nazarova-Roiter and Kleiner settled the question as to which posets have finite type.

It has become increasingly clear from the above-mentioned articles, as well as from related work of Donovan-Freislich [6], Gordon-Green [11], Green [12], [13], and Ringel [18], [19], that these diagrammatic methods provide a new and powerful tool for investigating representations of rings and algebras. Such

Received January 25, 1977.

The work of both authors was partially supported by a research contract with the National Science Foundation.

Michigan Math. J. 25 (1978).