EVERY CRUMPLED n-CUBE IS A CLOSED n-CELL-COMPLEMENT

Robert J. Daverman

Often it is a convenient simplification, in studying the wildness of (n-1)-spheres topologically embedded in the n-sphere S^n , to suppose that the wildness is confined to one complementary domain, in that the closure of the other complementary domain is an n-cell. The principal result here, Theorem 6.1, shows that for $n \geq 5$ this simplification has validity in a stronger setting: for each crumpled n-cube C in S^n and $\epsilon > 0$ there exists an ϵ -homeomorphism h of C into S^n such that the closure of S^n - h(C) is an n-cell. For n=3 the same result has been established by Hosay [16] and Lininger [17].

A crumpled n-cube C is a space homeomorphic to the union of an (n-1)-sphere in S^n and one of its complementary domains; the subset of C consisting of those points at which C is an n-manifold (without boundary) is called the *interior* of C, written Int C, and the subset C - Int C, which corresponds to the given (n-1)-sphere, is called the *boundary* of C, written Bd C. A crumpled n-cube C is a closed n-cell-complement if there exists an embedding h of C in S^n such that S^n - h(Int C) (equivalently, the closure of S^n - h(C)) is an n-cell. Translated into this terminology, the principal result implies that for $n \geq 5$ each crumpled n-cube is a closed n-cell-complement (Corollary 6.4).

Besides validating this simplification, the paper supports the opposite process permitting the construction of complexities. To describe the construction, we look first at a standard situation: any (n-1)-sphere Σ in S^n bounds two crumpled ncubes C_0 and C_1 , and fastening C_0 and C_1 (abstractly conceived) back together along their boundaries in an appropriate way reproduces S^n , with both $Bd\ C_0$ and Bd C_1 identified as Σ . Generally, such an attaching is called a sewing; specifically, a sewing of two crumpled n-cubes C_0 and C_1 is a homeomorphism between their boundaries, and associated with a sewing h is the sewing space, denoted as $C_0 \cup_h C_1$, which is the quotient space obtained from the disjoint union of C_0 and C_1 under identification of each point x in Bd C_0 with its image h(x) in Bd C_1 . To construct (n - 1)-spheres in Sⁿ with wildness in both complementary domains, one first can select crumpled n-cubes C_0 and C_1 , together with a sewing h, and then can hope to prove that $C_0 \cup_h C_1$ is homeomorphic to S^n . The ultimate problem, determining whether a given sewing space $C_0 \cup_h C_1$ is topologically equivalent to Sⁿ, can be an intricate and complex puzzle, about which [14] supplies much information. In any event, the results here (see Corollary 6.7) imply that the sewing space $C_0 \cup_h C_1$ is homeomorphic to a decomposition space associated with a decomposition of S^n into points and flat arcs, thereby reducing the sewing problem to a decomposition problem.

Instrumental for the approach used here is Ancel and Cannon's recent solution [1] of the Locally Flat Approximation Theorem, which states that each embedding of an (n-1)-manifold in an n-manifold $(n \ge 5)$ can be approximated arbitrarily closely by locally flat embeddings. Earlier Bryant, Edwards and Seebeck [5] had devised a

Received December 18, 1975. Revision received July 16, 1976. Research supported in part by NSF Grant GP-33872A3.

Michigan Math. J. 24 (1977).