COBORDISM CLASSES REPRESENTED BY FIBERINGS WITH FIBER IRP(2k + 1)

Frank L. Capobianco

1. INTRODUCTION

Let k be a nonnegative integer. Let $\eta_{n-k}(BO(k+1))$ be the unoriented cobordism group of real (k+1)-plane bundles over closed smooth (n-k)-dimensional manifolds. Let σ_n^k : $\eta_{n-k}(BO(k+1)) \to \eta_n$ be the homomorphism defined by assigning to the (k+1)-plane bundle ξ over M^{n-k} the cobordism class of the total space $\mathbb{R}P(\xi)$ of the associated projective space bundle. Many problems in cobordism theory can be reduced or related to the computation of this homomorphism. For instance, Stong [6; 8.4] proved that the image of σ_n^k is the set of cobordism classes in

 η_n which are represented by the total space of a fibering $\mathbb{R}P(k) \xrightarrow{i} M^n \xrightarrow{\pi} B^{n-k}$ which is totally nonhomologous to zero. Another example of the usefulness of σ_n^k was described in [1]: Let J_n^k be the set of cobordism classes in η_n which are represented by a manifold admitting an involution whose fixed point set is (n-k)-dimensional. Then the image of σ_n^k contains J_n^k , which in turn contains the image of σ_n^{2k-1} .

The main results of this paper are the following:

PROPOSITION 2.3. The image of σ_n^3 equals the set of classes in η_n which are represented by a fibering with fiber $\mathbb{R}P(3)$, and is the set of classes α in η_n with $w_l^j w_{n-j}(\alpha) = 0$ for all j, $0 \leq j \leq n$.

PROPOSITION 4.4. The image of σ_n^5 equals J_n^3 , and is the set of classes α in η_n with $w_1^j w_{n-j}(\alpha) = w_1^{i-5} w_{n-i} s_5(\alpha) = 0$ for all j and i, $0 \le j \le n$, $5 \le i \le n$.

2. THE IMAGE OF σ_n^3

PROPOSITION 2.0. Let $f: M^n \to B^b$ be a smooth map and let $F = f^{-1}(p)$ be the inverse image of a regular value of f. Let $i: F \to M$ be the inclusion. Then $i_*[F] = f^*[B] \cap [M]$.

Proof. By examining tubular neighborhoods of F and p, we see by naturality that $f^*[B]$ is equal to what Milnor and Stasheff call the dual cohomology class to F in M [4, page 120]. The proposition then follows from [4; Problem 11-c].

COROLLARY. If $F^f \xrightarrow{i} M \xrightarrow{\pi} B$ is a smooth fibering, then for any class $x \in H^f(M; \mathbb{Z}_2)$ the numbers $\langle i^*(x), [F] \rangle$ and $\langle x \cup \pi^*[B], [M] \rangle$ are equal.

Received October 8, 1976. Revision received April 27, 1977.

This research was supported in part by the National Science Foundation, Grant MCS 76-06373.

Michigan Math. J. 24 (1977).