THE RANGES OF ANALYTIC FUNCTIONS WITH CONTINUOUS BOUNDARY VALUES

J. Globevnik

Dedicated to my teacher Professor Ivan Vidav on the occasion of his 60th birthday

Denote by \triangle , $\overline{\triangle}$, $\partial \triangle$ the open unit disc in $\mathbb C$, its closure, and its boundary, respectively. If X is a complex Banach space, we denote by $A(\triangle, X)$ the class of all continuous functions from $\overline{\triangle}$ to X, analytic on \triangle , and we write A for $A(\triangle, \mathbb C)$. We denote the closure and the interior of a set $S \subset X$ by \overline{S} and Int S, respectively. We write $I = \{t \colon 0 \le t \le 1\}$ and denote the set of all positive integers by $\mathbb N$.

The main purpose of this note is to present a simple topological description of the sets $f(\overline{\triangle})$, $f \in A$. Note that the topological description of the sets $f(\partial \triangle)$, $f \in A$ is known [2].

We obtain our description by combining some ideas of Pełczyński [9] with some ideas from [6].

Definition. Let P be a subset of a metric space and let $\epsilon > 0$. We call a finite set $S_{\epsilon} \subset P$ an ϵ -path-net for P if given any $x \in P$ there exist $y \in S_{\epsilon}$ and a path in P joining x and y whose diameter is less than ϵ . We say that P is totally path-connected if

- (i) P is path-connected;
- (ii) for every $\varepsilon > 0$ there exists an ε -path-net for P.

Remark. If P is an open subset of a Banach space, then (ii) above is equivalent to the assumption that P has "property S" [7, 12]. Note that there are bounded domains in \mathbb{C} which are not totally path-connected.

THEOREM 1. Let a subset K of C consist of more than one point. Then $K = f(\overline{\triangle})$ for some $f \in A$ if and only if

- (i) $K = \overline{Int K}$;
- (ii) Int K is totally path-connected.

LEMMA 1. Let $F \subseteq \partial \triangle$ be a closed set of Lebesgue measure 0, and let $\lambda \in \partial \triangle$ - F. Assume that p: $I \to \mathbb{C}$ is a path satisfying p(0) = 0. Let $\varepsilon > 0$, and let $U \subseteq \overline{\triangle}$ be a neighborhood of λ . There exists $f \in A$ satisfying

- (i) $f(F) = \{0\};$
- (ii) $f(\lambda) = p(1)$;
- (iii) $|f(x)| < \epsilon$, $z \in \overline{\triangle}$ U;
- (iv) $f(\overline{\triangle}) \subset p(I) + \epsilon \triangle$.

Michigan Math. J. 24 (1977).

Received August 24, 1976. Revision received July 1, 1977.

This work was supported in part by the Boris Kidrič Fund, Ljubljana, Yugoslavia.