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All rings considered in this paper are assumed to be commutative and to contain
an identity element.

A. V. Geramita (personal communication) has raised the question of whether a
Hilbert domain R is Noetherian if each maximal ideal of R is finitely generated.
This question arises naturally in at least two contexts. First, the question arises in
connection with the well-known theorem of 1. S. Cohen to the effect that a ring S is
Noetherian if each prime ideal of S is finitely generated [3, Theorem 2}; to wit, O.
Goldman introduced the term Hilbevt ving in [13, p. 136], and his definition of the
term was a ring in which each prime ideal is an intersection of maximal ideals. (W.
Krull independently considered the class of Hilbert rings in [18]; the terminology of
[18, p. 354] for such rings is Jacobsonsche Ringe. In different terminology, a Hil-
bert ring is a ring in which each prime ideal is a J-7adical ideal, or a J-prime
ideal [22, p. 631]; for yet another perspective of Hilbert rings, see Section 1-3 of
[17].) Second, the property that each of its maximal ideals is finitely generated is
inherited by each polynomial ring R[X], :--, X,] in finitely many indeterminates
over a Hilbert ring R [17, Exercise 8, p. 20]; a straightforward proof of this result
can be obtained from the fact that a ring S is a Hilbert ring if and only if M N S is a
maximal ideal of S for each maximal ideal M of S[X,, -+, X, ] (see [13, Theorem 5]
or [18, Section 2]), but an alternate proof would follow at once from the Hilbert
Basis Theorem if the answer to Geramita’s question were affirmative. In Example
1, we construct a Hilbert domain that shows that the answer to Geramita’s question
is negative. (We use the term Hilbert domain to refer to a Hilbert ring that is also
an integral domain.) Since a one-dimensional Hilbert domain (or a zero-dimensional
Hilbert ring) with finitely generated maximal ideals is Noetherian by Cohen’s theo-
rem, such a domain D must have (Krull) dimension at least 2. We show, in fact,
that there is a two-dimensional example Dy that is a Bezout domain (and hence max-
imal ideals of Dy are principal) and a subring of Q(X), the rational function field in
one variable over the rational field Q. (Examples of one-dimensional, non-Noether-
ian, Bezout, Hilbert rings with principal maximal ideals are fairly easy to obtain
from the well-known D + M construction of [5, Appendix 2]; such rings must contain
zero divisors, and a specific example of such a ring is mentioned in the paragraph
following Example 1.)

Throughout the remainder of the paper, we use the following notation. Let D be
a Dedekind domain with quotient field K, and for each element & in A, an infinite
set, let E¢ be an infinite family of maximal ideals of D, where E, N EB =@ if o

and B are distinct elements of A. Let {dy}yes be a subset of D such that
dg # dg for a # B, and for each @ in A, let V,, = K[X](X-da); thus, V, is a rank-

one discrete valuation ring of the form K+ M, , where Mg = (X - dp)K[X]x_q )
o

Received March 10, 1976.
Supported in part by National Science Foundation grants GP-40526 and
GP-29326A2.

Michigan Math. J. 23 (1976).

353



