ON THE RANK OF AN OPEN MANIFOLD

Chao-Chu Liang

Let M denote a differentiable manifold. J. Milnor defined the rank of M to be the maximal number of vector fields X_1 , ..., X_k on M, everywhere linearly independent, such that their Lie brackets $[X_i, X_j] = 0$ for all i, j. $(X_1, \dots, X_k$ are called commuting vector fields [8].) From Hirsch's immersion theorem, we see that any open parallelizable n-dimensional manifold has rank n. By a tangent k-field on a manifold M, we mean k linearly independent vector fields X_1, \dots, X_k on M. In this short note, we will prove the following result.

THEOREM. Let M be an n-dimensional open manifold. Then M admits k linearly independent commuting vector fields if and only if M has a tangent k-field which is homotopic to a foliation.

Proof. Let $f_M: M \to BGL_n$ denote the classifying map for the tangent bundle TM of M. If M has a tangent k-field which is homotopic to a foliation, then f_M has a lifting to $BGL_1 \times \cdots \times BGL_1 \times B\Gamma_{n-k}$; that is, the lifting is homotopic to (constant) $\times \cdots \times$ (constant) $\times \phi$, where $\phi: M \to B\Gamma_{n-k}$. (B Γ_{n-k} is Haefliger's classifying space for codimension n - k foliations [1].)

Considering the topological groupoid $V\Gamma_p$ consisting of those local diffeomorphisms of R^p such that their first derivatives lie in SL(p,R), we may construct a classifying space $BV\Gamma_p$ for the codimension p volume-preserving foliations [7]. (Here we used the fact that an SL(n,R)-structure on an n-dimensional manifold is integrable [3, p. 6].) The argument in [2, p. 148] showed that an open manifold admits a codimension p volume-preserving foliation if and only if the classifying map for its tangent bundle lifts to $BGL_{n-p} \times BV\Gamma_p$ [7].

A multifoliation F on M is a collection of foliations $\{F_1, \dots, F_t\}$, with codimension $F_j = k_j$ and TF_j the tangent bundle of F_j , such that

$$\operatorname{codim}(\operatorname{TF_{i\,l}}\cap\cdots\cap\operatorname{TF_{i\,s}}) = k_{i\,l} + \cdots + k_{i\,s} \quad \text{for any subset } \{i1,\,\cdots,\,is\} \subseteq \{1,\,\cdots,\,t\}$$

[5, p. 406]. In [6], we called such an F a multifoliation of type (k_1, \dots, k_t) , and showed that an open manifold admits a multifoliation of type (k_1, \dots, k_t) with $k = \sum k_j \le n$ if and only if the classifying map for its tangent bundle lifts to $B\Gamma_{k_1} \times \dots \times B\Gamma_{k_t} \times BGL_{n-k}$.

Our classifying map f_M clearly has a lifting to $BV\Gamma_1 \times \cdots \times BV\Gamma_1 \times B\Gamma_{n-k}$. Equivalently, TM can be considered as a normal bundle of a particular codimension n Haefliger Γ -structure [2], where $\Gamma = V\Gamma_1 \times \cdots \times V\Gamma_1 \times \Gamma_{n-k}$. Then the argument in the proof of the result mentioned above ([6]) can be used here to show that M admits a multifoliation $F = \{F_1, \cdots, F_{k+1}\}$ of type (1, 1, ..., 1, n - k) such that F_1, \cdots, F_k are codimension 1 volume-preserving foliations with respect to the same volume form on M [7].

Received July 19, 1976.

Supported by the University of Kansas General Research Fund.

Michigan Math. J. 23 (1976).