THE GENUS OF A CLOSED SIMPLY CONNECTED MANIFOLD
Peter Andrews

Let NH be the homotopy category of nilpotent CW-complexes [8]. If X € NH
has finite type (i.e., all its homotopy groups are finitely generated), then define the
genus G(X) of X to be the collection of all objects of finite type Y € NH such that
Yp is homotopy equivalent to X, for all primes p. Here Xp is the p-localization of
X [8, 15]. A homotopy-theoretic property is said to be generic if it is shared by all
or none of the members of a genus.

In [8], Hilton, Mislin, and Roitberg prove that “being a Poincaré duality space”
and “being S-reducible” are both generic properties. This leads them to ask
whether “having the homotopy type of a closed manifold” and “having the homotopy
type of a closed m-manifold” are generic properties. This paper gives a partial
answer to these questions in the simply connected case. The main results are:

THEOREM A. Let M™ pe a closed, simply connected, piecewise linear (topo-
logical) manifold of dimension m > 5, and let X € G(M). Then X is the homotopy
type of a closed, piecewise lineay (topological) manifold.

THEOREM B. Let M™ be a closed, simply connected, smooth (C™) manifold,
with m > 5 and m odd, and let X € G(M). Then X is the homotopy type of a closed
smooth manifold.

THEOREM C. There exists a closed, simply connected, smooth manifold B8
and a homotopy type X € G(B) such that X is not the homotopy type of a closed
smooth manifold.

THEOREM D. Let M™ be a closed, simply connected, smooth n-manifold with
m > 5 and m # (21 - 2), and let X € G(M). Then X is the homotopy type of a closed
smooth w-manifold.

The proofs of Theorems A, B, and D follow roughly the same plan. A space in
the genus of a closed manifold is shown to be a Poincaré duality space whose Spivak
normal fibration can be given the structure of an R™-bundle. This reduces the
theorems to a problem of calculating surgery obstructions. The calculation is quite
easy in the cases of Theorems A and B, and in that part of Theorem D when
m# 2 (mod 4). When m = 2 (mod 4), Brown’s version of the Kervaire invariant is
used to examine the appropriate obstruction.

Section 1 carries out the first part of the program by making minor modifica-
tions in the techniques developed by Peter Kahn [10] and independently by the author
[1] to examine the mixing of homotopy types of manifolds (see [8, Section IL.7] for
definitions). In genus questions, one is looking at a space whose p-localizations all
agree with the p-localizations of a given space. In mixing questions, one is looking
at a space whose localizations agree with those of one space for a given set of
primes, and with those of a second space for the complementary set of primes. The
similarity of the theorems about mixing in [10] and [1], and those about the genus in
this paper, reflects the similarity of these situations. The analysis of the Kervaire
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