BRANCHED COVERINGS AND ORBIT MAPS
Allan L. Edmonds

1. INTRODUCTION

Let f: X — Y be a finite-to-one, closed and open (continuous) map, and consider
the question as to when the induced homomorphism in rational (sheaf-theoretic)
cohomology

(1.1) f*: H¥(Y; @ — H*(X; @) is injective.

Questions of this sort seem to have originated in a dual form with Eilenberg [6] and
Whyburn [11]. See also [2]. If X and Y are connected orientable manifolds, then a
standard Poincaré duality and degree argument shows that (1.1) is true. Also, if £
happens to be the orbit map for a finite group action on X, then (1.1) again holds be-
cause of the existence of a transfer map in this context [1; I1.19].

On the other hand, (1.1) is known to be false in general, since Bredon {2] and
others have constructed finite-to-one, open, piecewise linear maps from compact
contractible polyhedra onto the 2-sphere.

In this paper, X and Y shall always be assumed to be locally connected Haus-
dorff spaces. Additional hypotheses on the map f or on the spaces X and Y are
then considered which guarantee that (1.1) holds. In Section 2, standard geometric
notions of degree and local degree for { are defined and it is shown that if the de-
gree of f is always equal to the sum of the local degrees of f on each point inverse,
then (1.1) holds. The proof involves the construction of transfer homomorphisms.
Such a map f can be viewed as a generalization of Fox’s notion [7] of a branched
covering. In Section 3, the concept of a (topological) normal n-circuit is introduced,
generalizing that of an n-manifold. It is then shown that if X is a normal n-circuit,
then Y is also a normal n-circuit and the degree of f is always equal to the sum of
the local degrees in each point inverse of f. Proofs here are based on work of
Cernavskii [3], [4] and Viisil4 [10]. Finally, in Section 4 the automorphism group of
f consisting of all homeomorphisms g: X — X such that fg = f is calculated when
the branch set of f does not locally separate X. This result is then used to charac-
terize those maps f which can be identified with orbit maps for finite group actions
in the case where X is a simply connected piecewise linear manifold, Y is a poly-
hedron, and f is a piecewise linear map.
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