FRAMED MANIFOLDS WITH A FIXED POINT FREE INVOLUTION

Edgar H. Brown, Jr.

The aim of this note is to prove that every framed cobordism class of positive dimension can be represented by a framed manifold with a fixed point free involution which preserves the framing. In the following, all manifolds and maps are smooth wherever this makes sense.

Suppose M is a closed, compact m-manifold with a fixed point free involution t, ν_M is the normal bundle of $M\subset R^{m+k}$ (k large), and f: $\nu_M\to R^k$ is a framing. We say that t preserves f if the following condition is satisfied. Let N = M/t and let p: M \to N be the projection. Then M \to N \subset R^{m+k} is an immersion and hence p is covered by a canonical map s: $\nu_M\to\nu_N$ which is unique up to homotopy. We say that t preserves f if f = gs, where g: $\nu_N\to R^k$ is a framing. Let (M, f)/t = (N, g). Let Ω_*^{fr} denote the framed cobordism group and ${}_2\Omega_*^{fr}$ its two-primary part.

We prove the following theorem.

THEOREM 1. If $\alpha \in \Omega_{\rm m}^{\rm fr}$ (m > 0), then α can be represented by (M, f), where M admits a fixed point free involution t which preserves f. If $\alpha \neq 0$ and $\alpha \in {}_2\Omega_{\rm m}^{\rm fr}$, then (M, f) and t can be chosen so that M is [m/2]-connected and (M, f)/t is framed cobordant to zero.

We begin the proof of Theorem 1 by stating and proving a result of N. Ray [2]. Let P^{k-1} be real projective (k-1)-space, let $A: R^k \to R^k$ be given by

$$A(x_1, x_2, \dots, x_k) = (-x_1, x_2, \dots, x_k)$$
,

and let $\lambda\colon P^{k-1}\to SO_k$ be the composition of A and the map which assigns to each line ℓ , the reflection through the orthogonal complement of ℓ . If $g\colon \nu_N\to R^k$ is a framing and $u\colon N\to P^{k-1}$, let $ug\colon \nu_N\to R^k$ be the framing given by

$$ug(v) = (\lambda up(v)) (g(v)),$$

where p: $\nu_N \to N$ is the projection.

THEOREM 2 (N. Ray). If $\alpha \in {}_2\Omega^{fr}_m$ (m > 0, $\alpha \neq 0$), then α can be represented by (N, ug), where (N, g) is framed cobordant to zero and u_* : $\pi_i(N) \to \pi_i(P^{k-1})$ is an isomorphism for 2i < m.

Proof. Let $T(\nu_N)$ be the Thom space of ν_N , that is, the disc bundle modulo the sphere bundle, and let $t: S^{m+k} \to T(\nu_N)$ be the Thom-Pontrjagin construction. We identify Ω_m^{fr} with $\pi_{m+k}(S^k)$ under the map $\{N,g\} \to [T(g)t]$.

Let D^k be the unit k-disc and $S^{k-1} \circ P^{k-1}$ be $D^k \times P^{k-1}$ modulo the relation $(x, y) \approx (x, y')$ for $x \in S^{k-1}$. Let $J: S^{k-1} \circ P^{k-1} \to S^k = D^k/S^{k-1}$ be given by $J(x, y) = \lambda(y)(x)$. D. S. Kahn and S. B. Priddy [1] have shown that

Received July 14, 1975.

The author is supported by NSF Grant GP-38920X1.

Michigan Math. J. 23 (1976).