SUFFICIENT CONDITIONS FOR RANK-ONE COMMUTATORS AND HYPERINVARIANT SUBSPACES

Hong W. Kim, Carl Pearcy, and Allen L. Shields

Let \mathscr{X} be an infinite dimensional complex Banach space, and let $\mathscr{L}(\mathscr{X})$ denote the algebra of all bounded linear operators on \mathscr{X} . In an earlier paper [5] (see also [1]), the authors obtained the following extension of the celebrated theorem of V. Lomonosov [6]:

THEOREM A. Suppose T is an operator in $\mathcal{L}(\mathcal{X})$ and there exists a nonzero compact operator K in $\mathcal{L}(\mathcal{X})$ such that the rank of TK - KT is less than or equal to one. Then T has a nontrivial hyperinvariant subspace.

(Recall that a subspace \mathscr{M} of \mathscr{X} is a nontrivial hyperinvariant subspace for an operator T in $\mathscr{L}(\mathscr{X})$ if $(0) \neq \mathscr{M} \neq \mathscr{X}$ and T' $\mathscr{M} \subset \mathscr{M}$ for every operator T' in $\mathscr{L}(\mathscr{X})$ that commutes with T.)

The main purpose of this note is to obtain some results concerning the size of the class of operators to which Theorem A applies. In particular, let $\Delta(\mathscr{X})$ denote the set of all those operators T in $\mathscr{L}(\mathscr{X})$ with the property that there exists a compact operator K such that the rank of TK - KT is equal to one. The interest in the class $\Delta(\mathscr{X})$ derives, of course, from Theorem A. It turns out that $\Delta(\mathscr{X})$ is quite large, and in particular, if \mathscr{X} is a separable, infinite dimensional Hilbert space \mathscr{H} , we are presently unable to exhibit any nonscalar operator in $\mathscr{L}(\mathscr{H})$ that does not belong to $\Delta(\mathscr{H})$. Thus it is conceivable that the hyperinvariant subspace problem for (separable) Hilbert space can be settled affirmatively by showing that $\Delta(\mathscr{H}) = \mathscr{L}(\mathscr{H}) \setminus \{\lambda\}$.

If \mathscr{X} is, once again, an arbitrary infinite dimensional complex Banach space, and if $f \in \mathscr{X}$ and $\phi \in \mathscr{X}^*$, we shall write $f \otimes \phi$ for the operator of rank one in $\mathscr{L}(\mathscr{X})$ defined as follows: $(f \otimes \phi)(g) = \phi(g) f$, $g \in \mathscr{X}$. Clearly every operator in $\mathscr{L}(\mathscr{X})$ of rank one has the form $f \otimes \phi$ for some choice of nonzero vectors f in \mathscr{X} and ϕ in \mathscr{X}^* . Furthermore, for any T in $\mathscr{L}(\mathscr{X})$, an easy calculation shows that

$$T(f \otimes \phi) - (f \otimes \phi)T = (Tf \otimes \phi) - (f \otimes T^*\phi)$$
.

This fact will be used several times in what follows. Finally, the spectrum of an operator T in $\mathscr{L}(\mathscr{X})$ will be denoted by $\sigma(T)$.

We begin with the following elementary proposition whose proof we omit.

PROPOSITION 1. An operator T in $\mathcal{L}(\mathcal{X})$ belongs to $\Delta(\mathcal{X})$ if and only if $\alpha T + \beta \in \Delta(\mathcal{X})$ for all scalars $\alpha \neq 0$ and β . Furthermore, if $T \in \Delta(\mathcal{X})$ and if $S \in \mathcal{L}(\mathcal{X})$ and is quasisimilar to T (that is, if there exist operators X and Y in $\mathcal{L}(\mathcal{X})$ with trivial kernels and cokernels such that TX = XS, YT = SY, then $S \in \Delta(\mathcal{X})$. Finally, if $T \in \Delta(\mathcal{X})$, then $T^* \in \Delta(\mathcal{X}^*)$.

Received May 13, 1976.

Carl Pearcy and Allen L. Shields gratefully acknowledge support from the National Science Foundation.

Michigan Math. J. 23 (1976).