MODELS FOR COMMUTING CONTRACTIONS

Arthur Lubin

1. INTRODUCTION

Let L denote the unilateral shift on a vector-valued H^2 space $H^2_{\mathscr{H}}$. Let M be a closed invariant subspace for L, let P project $H^2_{\mathscr{H}}$ onto M^\perp , and denote by T the restricted shift $T = PL \mid_{M^\perp}$. G.-C. Rota showed by an amazingly simple argument that T^* is a universal model for a large class of operators; that is, if S is a contraction on \mathscr{H} of norm less than 1 then S is similar to some T^* . Rota's technique was refined by L. de Branges and J. Rovnyak to yield a model up to unitary equivalence: S is unitarily equivalent to some T^* if and only if $\|S\| \leq 1$ and $S^n \to 0$ strongly. (Both these results and basic background material on shifts and vectorial function theory can be found in [3].) Using restricted shifts as models, an extensive structure theory for operators has been developed; see [10].

D. N. Clark [1] extended Rota's theorem to the case of N commuting contractions by using the maps $T_k = PL_k \mid_{M^{\perp}}$ as a model, where

$$L_k f(z_1, \dots, z_N) = z_k f(z_1, \dots, z_N)$$

in the polydisc space $H^2(U^N)$. (See [6] for a basic reference.) Clark also characterized the commutant of $\{T_1, \cdots, T_N\}$, and hence, up to similarity, the commutant of N commuting contractions; this extended the one variable results of D. Sarason [7] and B. Sz.-Nagy and C. Foiaş [10]. In this paper, we modify the de Branges-Rovnyak technique to construct a unitary equivalence model for N commuting contractions by using a weighted shift analog of the maps T_k , and we extend Clark's description of the commutant to this case. We explain our notation below; for the basic theory of one variable weighted shifts the reader can consult [8].

2. NOTATION AND MODELS

For a fixed positive integer N, we use the notation $z=(z_1\,,\,\cdots,\,z_N),$ $e^{i\varphi}=(e^{i\varphi_1}\,,\,\cdots,\,e^{i\varphi_N}),$ and $J=(j_1\,,\,\cdots,\,j_N)$ a multi-index of either nonnegative integers, which we indicate by $J\geq 0,$ or arbitrary integers. We let e_k denote the multi-index J with $j_k=1$ and $j_n=0$ otherwise; $J\pm e_k$ has the obvious meaning except that by using $J-e_k$ we imply that $j_k\geq 1.$ We use $J\cdot\phi=j_1\phi_1+\cdots+j_N\phi_N;$ for $J\geq 0,\ \left|J\right|=j_1+\cdots+j_N,\ J!=j_1!\cdots j_N!,\ z^J=z_1^{j_1}\cdots z_N^{j_N};$ and given commuting operators $S_1\,,\,\cdots,\,S_N,\ S^J=S_1^{j_1}\cdots S_N^{j_N}.$ We let U^N and T^N denote the N-dimensional unit polydisc and torus respectively.

For a separable Hilbert space \mathscr{H} , $L^2=L^2_{\mathscr{H}}(T^N)$ and $H^2=H^2_{\mathscr{H}}(U^n)$ denote the standard Lebesgue and Hardy spaces of square summable vector-valued functions from T^N into \mathscr{H} : $f \in L^2$ has Fourier expansion

Received November 13, 1975.

Michigan Math. J. 23 (1976).