AN ANALYTIC CHARACTERIZATION OF GEOMETRICALLY STARLIKE FUNCTIONS

David Styer

The class $S^*(\alpha)$ of functions $f(z)=z+a_2z^2+\cdots$ which are analytic and univalent in the unit disc IB, and which satisfy the condition $\left|\arg zf'(z)/f(z)\right|<\alpha\pi/2$, $0<\alpha\leq 1$, was introduced and studied by Brannan and Kirwan [1]. Since $S^*(1)$ is the usual class of starlike univalent functions, $S^*(1)$ is not studied as such. Recently Leach [3] has extended $S^*(\alpha)$ to multivalent starlike functions. A slight modification of Leach's definition (which yields the same class of functions) follows.

Let p be a positive integer, and $0 \le \alpha \le 1$. Then $S^*(\alpha, p)$ denotes those functions f holomorphic in IB, with exactly p zeros there (zeros and critical points are counted by their multiplicity), such that

$$\lim\sup_{r\,\to\, l^{\,-}}\,\max_{|z|=\,r}\,\left|\arg\,zf'(z)/f(z)\right|\,\le\,\alpha\pi/2\;.$$

This definition clearly has affinities with the analytic definition of weakly starlike functions, $S_w(p)$, as defined by Hummel [2]. $f \in S_w(p)$ if and only if f is holomorphic in $I\!B$, has exactly p zeros there, and

$$\lim_{r \to 1^-} \inf_{\left|z\right| = r} \ \Re \ z f'(z)/f(z) \ge 0 \ .$$

For p > 1 it is no longer true that, with $\alpha = 1$, $S^*(\alpha, p) = S_w(p)$. It is the purpose of this paper to prove

THEOREM 1.
$$S^*(1, p) = S_g(p)$$
.

Here $S_g(p)$ is the class of geometrically starlike functions of order p. That is, $f \in S_g(p)$ if and only if f is holomorphic in f has exactly p zeros there, and for each point p in f there is a curve in f between p and some zero of p, which p maps one-to-one onto the radial line segment between p and p are the tone, we will need

LEMMA 1. Let $f \in S_w(p)$. Then $f \in S_g(p)$ if and only if f has p-1 critical points.

This result may be found in Styer [4, p. 232].

For all r>0 define $\gamma_r\colon [0,\,2\pi]\to \mathbb{C}$ by $\gamma_r(t)=re^{it}$, and let C_r be the image of γ_r . For any closed curve γ which does not pass through 0, let $I(\gamma,\,0)$ be the index, or winding number, of γ about 0.

LEMMA 2. Let g be holomorphic in the annulus $\{z: 0 < \rho < |z| < 1\}$, and have no zero there. Then the following two statements are equivalent.

Received October 15, 1975.

Michigan Math. J. 23 (1976).