LACUNARY POWER SERIES ON THE UNIT CIRCLE

I-Lok Chang

By the statement that a formal power series

(1)
$$S(\theta) = \sum_{n=1}^{\infty} c_n e^{ik_n \theta}$$

is q-lacunary we shall mean that its exponents k_n satisfy a condition of the form $k_{n+1}/k_n\!>\!q\!>\!1$ (n = 1, 2, \cdots). In a research announcement [2], R.E.A.C. Paley stated that if the series (1) is q-lacunary, and if in addition $\left|\mathbf{c}_n\right|\to 0$ and

 $\sum |c_n| = \infty$, then for each finite complex number w the series converges to w at every point of a set that is dense in $[0, 2\pi]$.

A complete proof of Paley's theorem was later given by M. Weiss [3]. Subsequently, J.-P. Kahane, M. Weiss, and G. Weiss [1, pp. 1-16] showed that the plane-covering property of $S(\theta)$ is only one aspect of a much stronger property of the sequence $\{S_n\}$ of partial sums of (1). They proved that if the series (1) is q-lacu-

nary, and if in addition $c_n \to 0$ and $\sum |c_n| = \infty$, then corresponding to every closed connected subset C of the extended complex plane there exists an everywhere dense set E in $[0, 2\pi]$ such that for each θ in E the set C is the set of limit points of $\{S_n(\theta)\}$.

This theorem fails if we omit the hypothesis that $c_{\rm n} \to 0.$ Indeed, let

$$E(\infty, S) = \{\theta \in [0, 2\pi] : \lim_{n \to \infty} |S_n(\theta)| = \infty\}.$$

If for each index n we take $c_n = n!$, then (even without the hypothesis of lacunarity) the series (1) obviously has the property that $E(\infty, S) = [0, 2\pi]$. It is not known in general whether the set $E(\infty, S)$ remains dense in $[0, 2\pi]$ if $c_n \neq 0$. Simple arguments show that it is a dense set if we assume in addition that q > 3. In this note we prove the following result.

THEOREM. To each q>1 there corresponds a positive constant A_q such that for each q-lacunary series (1) satisfying the two conditions

$$\lim_{n\to\infty}\sup|c_n|>0$$

and

(2)
$$\lim_{N\to\infty} \inf \left(\sum_{n=1}^{N} |c_n| / \max_{1\leq n\leq N} |c_n| \right) > A_q,$$

Received March 12, 1975. Revision received February 23, 1976. This paper is based on the author's dissertation, written at Cornell University.

Michigan Math. J. 23 (1976).