REGULAR NEIGHBORHOODS OF ORIENTABLE 3-MANIFOLDS

Robert M. Dieffenbach

1. INTRODUCTION

If M^m and Q^q are PL manifolds with $M\subseteq Q$, any two regular neighborhoods of M in Q are isotopic relative to M [1]. The matter of classifying different regular neighborhoods of a fixed M has been studied by C. P. Rourke and B. J. Sanderson [6], who construct a universal classifying space $BPL_{\widetilde{q}}$; different neighborhoods correspond to homotopy classes of $(\Delta$ -) maps of M into $BPL_{\widetilde{q}}$.

In this paper, the different regular neighborhoods of orientable 2- and 3-manifolds will be constructed and compared. As is usually the case, two regular neighborhoods N_1 and N_2 of a manifold M will be considered the same $(N_1 \cong N_2)$ if and only if there exists a PL homeomorphism h: $N_1 \to N_2$ such that h(x) = x for all $x \in M$. It will be seen in these two cases that the distinct orientable regular neighborhoods are in one-to-one correspondence with the elements of $H^2(M; \mathbb{Z}_2)$. A similar classification exists for tubular neighborhoods of differentiably embedded closed orientable 2- and 3-manifolds; the techniques are easily adapted to the differentiable case.

The notation and definitions used here will be consistent with those found in J. F. P. Hudson's book [4]. The boundary of a manifold M will be denoted by ∂M , and Δ^n will be the standard n-simplex; further, we write

$$I = [0, 1], I^{1} = [-1, 1], I^{n} = I^{n-1} \times I^{1}, S^{n} = \partial I^{n+1}.$$

If L and K are simplicial complexes with L < K, cx(K - L) will be used to denote the smallest subcomplex of K that contains K - L; by K" (rel L) we shall mean a second derived subdivision of K relative to L. All maps and manifolds will be PL. In particular, if V and V' are PL manifolds, a concordance is a PL homeomorphism H: V \times I \rightarrow V' \times I that maps V \times {i} homeomorphically to V' \times {i} for i = 0, 1. Two homeomorphisms f₀, f₁: V \rightarrow V' are said to be concordant relative to X \subseteq V in case there exists a concordance H: V \times I \rightarrow V' \times I with H₀ = f₀ and H₁ = f₁ such that H(x, t) = (H₀(x), t) for all x \in X. In this event, H is said to be fixed on X.

Block bundles [6] are a key tool in the construction, as are Δ -sets and their homotopy groups [7]. Of particular importance are the Δ -sets PL_q^{\sim} , whose k-simplexes are block isomorphisms of $\Delta^k \times I^q$ onto itself, and $PL_q(I)$, the sub- Δ -set of fibre-preserving block isomorphisms. Each of these sets has two components; however, the symbols PL_q^{\sim} and $PL_q(I)$ will be used here (incorrectly) to represent only the component containing the identity map.

If K is a simplicial complex (with the set of vertices totally ordered), \underline{K} will represent the associated Δ -set. Each n-simplex $A \in K$ will be identified with Δ^n according to the order of its vertices by a map σ^n . This identification induces for

Received January 16, 1975.

This research was supported in part by the National Science Foundation.

Michigan Math. J. 23 (1976).