AN L₂ ANALYTIC FOURIER-FEYNMAN TRANSFORM

R. H. Cameron and D. A. Storvick

INTRODUCTION

The concept of an *analytic Fourier-Feynman transform* was introduced in 1972 by M. D. Brue [2], and it was defined essentially as in (0.2) below. It was based on the analytic Wiener and Feynman integrals [3], for which we now give simplified definitions sufficiently general for this paper.

Definition. Let C[a, b] be the space of real continuous functions $x(\cdot)$ on [a, b] for which x(a) = 0. Let F be a functional such that the Wiener integral

$$J(\lambda) = \int_{C[a,b]} F(\lambda^{-1/2} x) dx$$

exists for almost all real $\lambda > 0$. If there exists a function $J^*(\lambda)$ analytic in the half-plane $\Re \lambda > 0$ such that $J^*(\lambda) = J(\lambda)$ for almost all real $\lambda > 0$, then we define this "essential analytic extension" of J to be the *analytic Wiener integral of* F *over* C[a, b] with parameter λ , and for $\Re \lambda > 0$ we write

$$\int_{C[a,b]}^{anw_{\lambda}} F(x) dx = J^{*}(\lambda).$$

Definition. Let q be a real parameter (q \neq 0), and let F be a functional whose analytic Wiener integral exists for $\Re \lambda > 0$. Then, if the following limit exists, we call it the analytic Feynman integral of F over C[a, b] with parameter q, and we write

(0.1)
$$\int_{C[a,b]}^{anf_{q}} \mathbf{F}(\mathbf{x}) d\mathbf{x} = \lim_{\lambda \to -iq} \int_{C[a,b]}^{anw_{\lambda}} \mathbf{F}(\mathbf{x}) d\mathbf{x}.$$

$$\Re \lambda > 0$$

On the basis of these definitions, we can define Brue's transform as follows: Definition. If $q \neq 0$ and if for each $y \in C[a, b]$ the analytic Feynman integral

(0.2)
$$\mathbf{T}_{\mathbf{q}}^{*}\mathbf{F} = \int_{\mathbf{C}[a,b]}^{\mathbf{anf}_{\mathbf{q}}} \mathbf{F}(\mathbf{x} + \mathbf{y}) d\mathbf{x}$$

exists, then T_q^*F is called the analytic Fourier-Feynman transform of F.

Actually, Brue used a slightly more general definition of the analytic Feynman integral, but restricted the definition of his transform to the case q=-1, using the case q=1 as the inverse transform.

Received March 7, 1975.

Michigan Math. J. 23 (1976).