CONTRACTIVE LINEAR MAPS ON C*-ALGEBRAS

Richard I. Loebl

0. INTRODUCTORY REMARKS

The purpose of this note is to study the interplay and distinctions between contractive and completely contractive linear maps on C^* -algebras. Both in spirit and in technique, these results follow the outline given by M.-D. Choi [2].

If $\mathscr A$ and $\mathscr B$ are C*-algebras with identity, and $\phi\colon\mathscr A\to\mathscr B$ is a linear map, then $\phi_n=\phi\bigotimes\operatorname{id}_n$ is the entry-wise map from the C*-algebra $\mathscr A\boxtimes M_n$ to $\mathscr B\boxtimes M_n$, where M_n denotes the C*-algebra of n-by-n complex matrices. We say that ϕ is completely positive if every ϕ_n $(n\geq 1)$ is positive; ϕ is completely contractive if $\sup_n\|\phi_n\|\leq 1$; and ϕ is completely bounded if $\sup_n\|\phi_n\|<\infty$; see [1]. Note that $\|\phi_n\|\geq \|\phi\|$.

Let $C_k[\mathscr{A},\mathscr{B}]$ denote the set of all linear maps ϕ from \mathscr{A} to \mathscr{B} such that ϕ_1 , ..., ϕ_k are contractive; $C_\infty[\mathscr{A},\mathscr{B}]$ is then the set of all completely contractive maps. It is easy to see that $C_1 \supseteq C_2 \supseteq \cdots$ and $C_\infty = \bigcap_{k>1} C_k$.

It is known that if $P_k[\mathcal{A}, \mathcal{B}]$ denotes the set of all linear maps ϕ from \mathcal{A} to \mathcal{B} such that ϕ_1, \dots, ϕ_k are positive, then $P_1[\mathcal{A}, \mathcal{B}] = P_\infty[\mathcal{A}, \mathcal{B}]$ if either \mathcal{A} or \mathcal{B} is commutative [1, p. 144]. Further, Choi established that $P_1[\mathcal{A}, \mathcal{B}] = P_2[\mathcal{A}, \mathcal{B}]$ implies \mathcal{A} or \mathcal{B} is commutative [2, Theorem 4].

The results we shall establish are analogous: if \mathcal{B} is commutative, then $C_1[\mathcal{A},\mathcal{B}]=C_\infty[\mathcal{A},\mathcal{B}];$ and if $C_1[\mathcal{A},\mathcal{B}]=C_2[\mathcal{A},\mathcal{B}],$ then \mathcal{A} or \mathcal{B} is commutative. The analogy breaks down drastically in the case of a commutative domain: If \mathcal{A} is commutative, therefore of the form C(X) [5, Theorem 4.2.2] and $C_1[\mathcal{A},\mathcal{B}]=C_\infty[\mathcal{A},\mathcal{B}],$ then by Theorem C, the space X contains at most two points! We shall also make some remarks about the case of completely bounded maps.

1. COMPLETELY CONTRACTIVE MAPS

LEMMA 1. Let $\mathscr G$ be a linear subspace of a C*-algebra, and let $\mathscr C$ be a commutative C*-algebra. Let $\phi\colon \mathscr G\to \mathscr C$ be a linear map. Then $\|\phi\|=\|\phi_n\|$ for $n=1,\,2,\,\cdots$.

Proof. We modify [1, Proposition 1.2.2]. Identify $\mathscr E$ as C(X), let n be a positive integer, and for $[a_{ij}] \in \mathscr I \otimes M_n$, let $\phi(a_{ij}) = f_{ij} \in C(X)$. Then

$$||[f_{ij}]|| = \sup_{x} \sup_{\|\zeta\|, \|\eta\| < 1} |\langle [f_{ij}(x)]\zeta, \eta \rangle|,$$

where ζ , $\eta \in \mathbb{C}^n$. However,

Michigan Math. J. 22 (1975).

Received June 2, 1975.

The author was supported in part by a Wayne State University Faculty Research Award.