COUNTEREXAMPLES FOR THE SPACE OF MINIMAL SOLUTIONS OF THE EQUATION $\Delta u = Pu$ ON A RIEMANN SURFACE

Y. K. Kwon and J. L. Schiff

1. Let $P \geq 0$ ($P \not\equiv 0$) be a C^1 -density on an open Riemann surface R. The space of nonnegative C^2 -solutions on R of the elliptic equation $\Delta u = Pu$ is denoted by PN(R). A function $u \in PN(R)$ is said to be PN-minimal if for every $v \in PN(R)$ with $0 \leq v \leq u$, there exists a constant c_v such that $v = c_v u$ on R.

It was established in a former work by the second author [6] that if the space PB(R) of bounded C^2 -solutions of $\Delta u = Pu$ is of dimension at least 2, then every PN-minimal function on R has zero infimum. The purpose of this note is to demonstrate that the conclusion is no longer valid in the remaining two cases: dim PB(R) = 0 or 1.

2. First consider the case dim PB(R) = 0. Take R to be the complex plane. It is well-known that dim PB(R) = 0 since R is parabolic (see H. L. Royden [4]). For a constant M > 2 and the density

(1)
$$P(z) = M^{2} |z|^{M-2} (1 + |z|^{M})^{-1}$$

on R, it is not difficult to see that the function $v(z) = |z|^{M} + 1$ belongs to the class PN(R).

We claim that v(z) is PN-minimal on R. A bit more strongly, it is true that PN(R) is generated by v(z). For a function $u \in PN(R)$, set $\phi = u \cdot v^{-1}$. We need to show that ϕ is a constant. In view of the conditions $\Delta u = Pu$ and $\Delta v = Pv$, the function ϕ must satisfy the partial differential equation

$$\Delta \phi + \frac{2\mathbf{M} |\mathbf{z}|^{\mathbf{M}-2}}{|\mathbf{z}|^{\mathbf{M}+1}} \left(\mathbf{x} \frac{\partial \phi}{\partial \mathbf{x}} + \mathbf{y} \frac{\partial \phi}{\partial \mathbf{y}} \right) = 0$$

on R. It follows from Liouville's theorem (see for example M. Prother and G. Weinberger [3, p. 120]) that every nonnegative solution of this equation is a constant. Thus the plane R with the density (1) carries a PN-minimal function $v(z) = \left|z\right|^{M} + 1 \ (\geq 1)$, although dim PB(R) = 0.

3. Turning now to the case dim PB(R) = 1, we base our argument on the remarkable examples of Y. Tôki [7], [8] (see also L. Sario [5]) of a hyperbolic Riemann surface carrying no nonconstant positive harmonic functions. We take such a surface R ϵ O_{HB} - O_{G} and construct a C^{1} -density $Q \geq 0$ (Q $\not\equiv 0$) on R such that $\int_{R} Q(z) \, dx \, dy < \infty.$ Thus HB(R) and QB(R) are isomorphic (Royden [4], also M.

Nakai [1]), which implies that dim QB(R) = 1. Moreover, dim HBD(R) = 1 implies

Received December 11, 1974.

Michigan Math. J. 21 (1974).