EMBEDDINGS OF k-ORIENTABLE MANIFOLDS

Keith R. Ferland

1. INTRODUCTION

Let M be a closed, k-connected, smooth, n-dimensional manifold, and let M_0 denote M minus a point $x_0 \in M$. In [2], J. C. Becker and H. Glover showed that for $j \leq 2k$ and $2j \leq n$ - 3, the manifold M embeds in R^{2n-j} if and only if M_0 immerses in R^{2n-j-l} . We shall extend this result to j=2k+1 by placing an additional condition of orientability on M.

A vector bundle is called k-*orientable* if its restriction to the k-skeleton of its base is stably fibre-homotopy-trivial. A manifold is k-orientable if its tangent bundle is k-orientable.

Letting M be (k + 1)-orientable with $k \le (n - 5)/4$, we state our main theorem.

THEOREM 1.1. M embeds in $R^{2n-2k-1}$ if and only if M_0 immerses in $R^{2n-2k-2}$.

This result reduces an embedding problem to one involving an immersion in which the top obstruction vanishes.

As applications we obtain the following.

THEOREM 1.2. Let M be an n-dimensional, simply-connected spin manifold with $n \equiv 3 \pmod{4}$ and $n \ge 11$. Then M embeds in R^{2n-3} .

Proof. It is sufficient to show that the associated bundle with fibre $V_{m,m-n+4}$ has a cross-section, for large m. The obstructions to such a cross-section lie in $H^{i+1}(M_0; \pi_i(V_{m,m-n+4}))$. If i < n-4, then $\pi_i = 0$. For i = n-4, the obstruction \overline{w}_{n-3} is 0, by [7]. The homotopy group π_{n-3} is 0, by [6]. By connectedness, $H^{n-1}(M_0) = 0$, and finally, $H^n(M_0) = 0$.

COROLLARY 1.3. If M is a closed, almost parallelizable, k-connected n-manifold and k \leq (n - 5)/4, then M can be embedded in R^{2n-2k-1}.

The corollary follows from the fact that M is (n-1)-orientable and that by [4] M_0 can be immersed in \mathbb{R}^n . This corollary extends a result of R. de Sapio [8], for some values of k.

2. ORIENTABILITY

Let $\mathscr E$ be a spectrum as defined in [10]. Let $\mathscr S$ denote the sphere spectrum, and let $\mathscr S^k$ denote the k-stem spectrum. (We obtain $(S^n)^k$ from S^n by killing the homotopy group for $i \ge n+k$ with the inclusion map $\lambda \colon S^n \to (S^n)^k$.) As in [10], we have a generalized homology and cohomology theory defined by

Received November 11, 1973.

Michigan Math. J. 21 (1974).