THE ABSOLUTE CONVERGENCE OF CERTAIN LACUNARY FOURIER SERIES

George Benke

Let G be a compact abelian group, and let Γ be its dual group. Suppose $E \subset \Gamma$ and f is a function on G. The function f is called an E-function if $\hat{f}(\gamma) = 0$ for all $\gamma \not\in E$ (\hat{f} is the Fourier transform of f). By A(G) we denote the space of functions whose transforms belong to $\ell^1(\Gamma)$, and $\|f\|_{A(G)}$ is defined to be $\|\hat{f}\|_{\ell^1(\Gamma)}$. For each set S(G) of functions defined on G, we denote by $S_E(G)$ the E-functions in S(G). A set $E \subset \Gamma$ is a Sidon set if $A_E(G) = C_E(G)$, where C(G) is the space of continuous functions on G. For $2 , a set <math>E \subset \Gamma$ is a $\Lambda(p)$ -set if $L_E^2(G) = L_E^p(G)$. A set $E \subset \Gamma$ is a Λ -set if it is a $\Lambda(p)$ -set for all p and if in addition the inclusions $L_E^2(G) \to L_E^p(G)$ have norm at most $Cp^{1/2}$, where C depends only on the set E.

It is known that every Sidon set is a Λ -set [9, p. 128], and that there exist sets that are $\Lambda(p)$ -sets for all p but are not Sidon sets [2, p. 803]. Actually, in the light of results in [1, p. 131], the sets constructed in [2] are not Λ -sets. It is therefore natural to ask whether there exist Λ -sets that are not Sidon sets. In general, this is an open question, but in certain torsion groups every Λ -set is also a Sidon set [6]. That Sidon sets are close to Λ -sets from a structural standpoint was shown in [1]. In this paper, we show that in an analytical sense they are also close. In particular, we construct a Banach space B(G) of functions on G such that $A(G) \hookrightarrow B(G) \hookrightarrow C(G)$ and $A(G) \hookrightarrow B(G) \hookrightarrow C(G)$ are sets is analogous to the connection between $A(G) \hookrightarrow B(G) \hookrightarrow C(G)$ and $A(G) \hookrightarrow B(G) \hookrightarrow C(G)$ and $A(G) \hookrightarrow B(G) \hookrightarrow C(G)$ are sets is analogous to the connection between $A(G) \hookrightarrow B(G) \hookrightarrow C(G) \hookrightarrow C(G)$ and $A(G) \hookrightarrow C(G) \hookrightarrow C(G) \hookrightarrow C(G)$ is motivated by the work in [3] and [4], and the connection between $A(G) \hookrightarrow C(G) \hookrightarrow C(G) \hookrightarrow C(G)$ are also close.

In Section 1 of this paper, we define two spaces K(G) and R(G) of functions on G that, (in the language of M. A. Rieffel [7]) are Banach modules. The space B(G) is then defined, and it turns out to be a realization of the Banach module tensor product $K(G) \bigotimes_{L^1(G)} R(G)$. In Section 2, we establish the connection between B(G) and Λ -sets.

1. DEFINITIONS AND PROPERTIES OF THE BASIC SPACES

For
$$f \in \bigcap_{2 , let$$

$$\|f\|_{\Lambda} = \sup \{p^{-1/2} \|f\|_{p} | 2$$

and let K(G) be the set of all functions f on G for which $\|f\|_{\Lambda}$ is finite. It is easy to verify that $\|\|\|_{\Lambda}$ is a norm on K(G) and that, endowed with this norm, K(G) becomes a two-sided Banach L¹(G)-module with respect to convolution. Next, we shall define a space R(G) of functions that is also a two-sided Banach L¹(G)-module

Received June 6, 1973.

Michigan Math. J. 21 (1974).