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1. INTRODUCTION

Let A denote the infinite series E;ozl ayx, where {ak}oﬁzl is a sequence of
elements of a topological vector space X. If p is a permutation of the positive in-
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tegers, let A, denote the series Ek:l ap(k), called a reavrangementi ot A. Let
S o denote the set of elements s € X such that some rearrangement of A converges
to s. If A converges and Sp contains only one element, then A is said to converge
with invariant sum. If A converges, but not every rearrangement of A converges,
then A is said to converge conditionally. If Ap converges for every permutation p,
then A is said to converge unconditionally.

In every linear topological space, unconditional convergence implies conver-
gence with invariant sum. In a Euclidean space R™, the converse is true. In fact,
if A is a conditionally convergent series in R™, then S, is an affine subspace of
R™ whose dimension is at least one. (In the case when m = 1, this result is of
course a well-known theorem of Riemann (see [15, p. 419] or [1, Chapter 12});
proofs for the general case have been given by E. Steinitz [13] and others ([6], [14],
[16], [17]).) In Section 2, we shall prove that the same statement holds for the
countably-infinite product space R® (with the product topology). Our treatment
makes it easy to understand just how the dimension of S, is determined, in either
the finite- or infinite-dimensional case.

C. W. McArthur [11], using work of H. Hadwiger [9], showed that in every in-
finite-dimensional Banach space there is a conditionally convergent series that con-
verges with invariant sum. His method yields the same result for every infinite-
dimensional Fréchet space on which a continuous homogeneous norm can be defined.
A Fréchet space has such a norm if and only if it does not contain a subspace iso-
morphic to R® (see [2]).

We should like to mention the important result of A. Dvoretzky and C. A.
Rogers [5], that in every infinite-dimensional Banach space there is a series that
converges unconditionally but not absolutely. For other proofs of this, see [10],
[12], and [7] or [8].

In Section 3, we consider another question about series in R*: Is it true that
for every sequence {ay}%-; in R® such that lim; _, , a; = 0, there exists a se-
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quence {&y }j-1, with each ¢y equal to +1 or -1, such that 2121 Exa5 Con-
verges? The answer is yes. The answer was known to be yes in the case of R™ [3]
and no in the case of every infinite-dimensional Banach space [4, p. 157, Theorem 8].

We should like to thank J. R. Retherford for telling us about these two questions
and advising us of relevant references.
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