A GENERALIZATION OF EPSTEIN ZETA FUNCTIONS

Chungming An

In [1], we associated with certain polynomials a Dirichlet series that generalizes the Epstein zeta functions. In [2], we used various methods to study the analytic properties of the Dirichlet series. In this note, we obtain somewhat stronger results for certain special cases.

Let $F(X) = F(X_1, \dots, X_n)$ be an integral form of degree δ such that the equation F(x) = 0 has no solutions in \mathbb{R}^n except x = 0. We may assume that F(x) is positive definite. It is obvious that for each k the equation $F(\gamma) = k$ has only finitely many solutions γ in \mathbb{Z}^n . Hence it makes sense to consider series of the type

$$\zeta(\mathbf{F}, \alpha, \mathbf{s}) = \sum_{\gamma \in \mathbb{Z}^{n} - \{0\}} \mathbf{F}(\gamma)^{-\mathbf{s}} e(\langle \alpha, \gamma \rangle),$$

where $s = \sigma + it$ is a complex number, $\alpha \in \mathbb{Z}^n$, the symbol $\langle \ , \ \rangle$ indicates the standard inner product in \mathbb{R}^n , and $e(a) = \exp(2\pi i a)$ for $a \in \mathbb{R}$. If F(x) is a quadratic form and $\alpha \in \mathbb{Z}^n$, then $\zeta(F, \alpha, s)$ is the well-known Epstein zeta function. The absolute convergence of the series for $\sigma > n/\delta$ in the general case and the analytic continuability for $\alpha \in \mathbb{Q}^n$ in certain special cases have been established in [1] and [2]. For $\alpha \in \mathbb{Q}^n$, we may apply C. L. Siegel's method [3] to continue the series analytically into the half-plane $\sigma > (n-1)/\delta$ (see [2]).

In this paper, we shall prove the following result.

THEOREM. (a) If $\alpha \notin \mathbb{Z}^n$, the function $\zeta(F, \alpha, s)$ can be continued analytically as an entire function of s.

(b) If $\alpha \in \mathbb{Z}^n$, the function $\zeta(F, \alpha, s)$ can be continued analytically as a meromorphic function of s with only a simple pole at $s = n/\delta$; the residue is

$$\underset{s=n/\delta}{\operatorname{Res}} \, \, \zeta(F, \, \alpha, \, s) \, = \, (2\pi)^{n/\delta} \, \Gamma(n/\delta)^{-1} \, \int_{\mathbb{R}^n} \exp\left(-2\pi \, F(x)\right) \mathrm{d}x \, .$$

Proof. Let us put $\xi(F, \alpha, s) = (2\pi)^{-s} \Gamma(s) \zeta(F, \alpha, s)$. By the Mellin transform, we get the integral representation

$$\xi(\mathbf{F}, \alpha, \mathbf{s}) = \int_0^\infty \sum_{\gamma \in \mathbb{Z}^n - \{0\}} \exp(-2\pi t \, \mathbf{F}(\gamma)) \, e(\langle \alpha, \gamma \rangle) t^{s-1} \, dt$$
$$= \int_0^\infty [\mathscr{O}(\mathbf{F}, \alpha, it) - 1] t^{s-1} \, dt \quad (s > n/\delta),$$

where, for $\tau \in H = \{z \in \mathbb{C}: \Im z > 0\}$,

Received September 28, 1973.

Michigan Math. J. 21 (1974).