PIERCING DISKS WITH TAME ARCS

J. W. Cannon

We give here a short proof of the following theorem of R. H. Bing.

THEOREM 0 (Bing [5]; see [3] for an earlier related theorem). Suppose that S is a 2-sphere in E^3 , that A is a rectilinear segment in E^3 , and that $\epsilon > 0$. Then there exists an ϵ -ambient isotopy $H: E^3 \times I \to E^3 \times I$ of E^3 , fixed outside $N(A \cap S, \epsilon)$, such that $H_1(A) \cap S$ is finite. (The map $H_1: E^3 \to E^3$ is the homeomorphism defined by the restriction $H \mid E^3 \times \{1\}$.)

Bing's original proof of the Side Approximation Theorem (S.A.T.) [4] (see [7] for a new proof) was considerably complicated by the lack of a proof for Theorem 0; Bing first proved Theorem 0 by using both the Side Approximation Theorem and a number of its deep consequences. Our proof of Theorem 0 depends only on the existence of abundantly many *tame* arcs in S [2]; the existence of such tame arcs has recently been established independently of the S.A.T. (see [6, Sections 2 and 3]).

Definition. A compact metric space K is said to be a regular compactum if for each $\epsilon>0$ there exist a finite subset K_{ϵ} of K and a separation

$$K - K_{\varepsilon} = K_1 \cup \cdots \cup K_r$$
 (separated)

of K - K_{ϵ} such that each of the sets K_1 , ..., K_r has diameter less than ϵ .

LEMMA. If K is a regular compactum in E^2 and A is an arc in E^2 , then for each $\epsilon>0$ there exists an ϵ -isotopy $H\colon E^2\times I\to E^2\times I$ of E^2 , fixed outside $N(A\cap K,\,\epsilon)$, such that $H_1(A)\cap K$ is finite.

Proof. Since K is at most 1-dimensional, we may assume that $A\cap K$ is a 0-dimensional subset of Int A. Then $K\cap A$ is covered by the interiors of finitely many disjoint $\epsilon\text{-subarcs }A_1$, ..., A_k of Int A. There exist disjoint $\epsilon\text{-disks}$ D_1 , ..., D_k in E^2 such that for each i the intersection $D_1\cap A=A_i$ is a spanning arc of D_i . It clearly suffices to show that Bd A_i bounds a spanning arc B_i of D_i such that $B_i\cap K$ is finite.

Since K is a regular compactum, it follows from [8, (3.2) Theorem, p. 35] that there are finitely many disks E_1 , ..., E_n in Int D_i whose interiors cover $K\cap A_i$ and such that, for each j, the set (Bd $E_j)\cap K$ is finite. Clearly, there is an arc B_i bounded by Bd A_i in the set

$$\left[A_i - \bigcup_{j=1}^n \text{ Int } E_j\right] \cup \left[\bigcup_{j=1}^n \text{ Bd } E_j\right].$$

It is equally clear that this B_i must satisfy the requirements of the preceding paragraph. This completes the proof of the lemma.

Received January 16, 1973.

The author is a research fellow of the Alfred P. Sloan Foundation.

Michigan Math. J. 20 (1973).