THE RELATIVE GROWTH OF SUBORDINATE FUNCTIONS

Zbigniew Bogucki and Jozef Waniurski

1. INTRODUCTION

Suppose the functions f and F are regular in the unit disk K and vanish at the origin. The function f is said to be subordinate to F in K (in symbols: $f \prec F$) if there exists a function ω regular in K with the properties that $\omega(0) = 0$, $|\omega(z)| < 1$ ($z \in K$), and $f(z) \equiv F(\omega(z))$. In all sufficiently small disks $K_r = \{z: |z| < r\}$, functionals of r and f are in general dominated by corresponding functionals of r and F, whenever $f \prec F$. Many authors have studied the problem of determining the largest disk where such a domination takes place. For example, G. M. Golusin [4] proved the following result. Let a(r) and A(r) denote the areas of the Riemann surfaces $f(K_r)$ and $F(K_r)$, respectively. Then

$$a(r) \leq A(r)$$
 $(0 \leq r \leq 1/\sqrt{2})$,

provided $f \lt F$. E. Reich was the first to investigate a more general problem. He obtained estimates of the ratio a(r)/A(r) in the whole unit disk under the assumption that $f \lt F$, and he proved the inequality [7]

$$a(r)/A(r) \le mr^{2m-2} \quad \left(\frac{m-1}{m} \le r^2 \le \frac{m}{m+1}; m = 1, 2, \cdots\right),$$

which implies Golusin's result in the case where m = 1.

In this paper, we study the least upper bound of another ratio. The authors thank Professor J. G. Krzyż for suggesting this problem.

Let A_n (n = 1, 2, ...) denote the class of functions f regular in K such that

$$f(z) = a_n z^n + a_{n+1} z^{n+1} + \cdots \quad (a_n \ge 0).$$

Let S denote the class of functions regular and univalent in K, subject to the usual normalizations. Suppose S_0 is some fixed subclass of S, and suppose that for each η ($|\eta| < 1$), the function η^{-1} f(η z) belongs to S_0 whenever f ϵ S_0 . Define

$$\kappa(\mathbf{r}, \mathbf{n}, \mathbf{S}_0) = \sup \{ |f(\mathbf{z})/F(\mathbf{z})| : f \in \mathbf{A}_n, F \in \mathbf{S}_0, f \prec F, |\mathbf{z}| = r \}$$

(n is a positive integer, and 0 < r < 1). We are able to determine $\kappa(r, n, S^*)$ and $\kappa(r, n, S_c)$, where S^* denotes the class of functions starlike with respect to the origin and S_c denotes the class of convex functions.

Let B_n (n = 1, 2, \cdots) denote the class of functions ω regular in K and satisfying the conditions

$$\omega(z) = \alpha_n z^n + \alpha_{n+1} z^{n+1} + \cdots \qquad (\alpha_n \ge 0)$$

Received February 16, 1970.

Michigan Math. J. 18 (1971).