DERIVATIVES OF SINGULAR INNER FUNCTIONS

Michael R. Cullen

Let U denote the open unit disc $\{z: |z| < 1\}$, and let T denote the unit circle $\{z: |z| = 1\}$. For $0 , the Hardy class <math>H^p$ consists of all functions f analytic in U for which

$$\sup_{0 \le r \le 1} \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p d\theta$$

is finite. An analytic function f is said to be of bounded characteristic (f ϵ N) in case

$$\sup_{0 < r < 1} \frac{1}{2\pi} \int_{0}^{2\pi} \log^{+} \left| f(re^{i\theta}) \right| d\theta$$

is finite, and to be in class B^p (0 < p < 1) if

$$\frac{1}{2\pi} \int_0^{2\pi} \int_0^1 |f(re^{i\theta})| (1-r)^{1/p-2} dr d\theta$$

is finite. It is well known that $H^p \subset N$ [4, p. 16], and that $H^p \subset B^p$ for 0 [5, p. 415].

A singular inner function is a function of the form

$$S(z; \mu) = \exp \left(-\int \frac{e^{it} + z}{e^{it} - z} d\mu(e^{it})\right),$$

where μ is a positive measure on T, singular with respect to Lebesgue measure on T (see Chapter 5 of [6] for details). Recently, much attention has been given to the factorization and boundary properties of functions with derivatives in H^P (see [1], [2], and [3], for instance). In [2], J. G. Caughran and A. L. Shields have raised the problem of finding conditions on the singular measure μ sufficient to insure that S'(z; μ) \in H^P for some p > 0. Is it possible that S'(z; μ) \in H^{1/2}? Does there exist a singular inner function S(z; μ) such that S'(z; μ) \in H^P and the distribution function of μ is continuous? Theorems 1 and 4 of this paper give conditions on μ sufficient to insure that S'(z; μ) belongs to H^P or N, and they answer the latter question in the affirmative. Theorem 2 shows that in case S'(z; μ) \in H^{1/2}, the support σ (S) of μ must be perfect and may not be a Carleson set. Recall that a Carleson set is a closed subset of T that has measure zero and whose complement is the union of open

arcs of lengths ϵ_n , where $\sum \epsilon_n \log 1/\epsilon_n < \infty$. Finally, we use Theorem 4 to give an example of a singular inner function whose derivative is in H^p (p < 1/4) and whose support is a perfect non-Carleson set.

Received October 29, 1970.

Michigan Math J. 18 (1971).