THE HARDY CLASS OF A SPIRAL-LIKE FUNCTION

Lowell J. Hansen

1. INTRODUCTION

A univalent function f analytic on the open unit disk Δ is said to be *spiral-like* of order σ ($|\sigma| < \pi/2$) if it is normalized (f(0) = 0 and f'(0) = 1), and if in addition it satisfies the condition

$$\Re \left[e^{i\,\sigma}\,z\,f'(z)/f(z) \right] > 0 \qquad (z\,\,\epsilon\,\,\Delta)\,.$$

(Spiral-like functions were considered by L. Špaček [5].) For each spiral-like function f, we shall determine, by studying the region $f(\Delta)$, the Hardy classes H_p to which f belongs. This is the object of Theorem 1, which is stated in Section 2 and proved in Section 3. The proof will use the notion of the Hardy number of a region, which was defined and studied in [1]. Theorem 1 enables us to draw some conclusions concerning the growth of the maximum modulus and the Taylor coefficients of spiral-like functions (Section 4).

2. PRELIMINARIES

Let Ω be a region (that is, a connected nonempty open set in the finite complex plane) that contains the point z=0. We shall say that Ω is *spiral-like* of order σ ($|\sigma| < \pi/2$) if, whenever $z_0 \in \Omega$, the spiral $\{z_0 \exp(te^{-i\sigma}): t \leq 0\}$ is also contained in Ω . We note that if $\sigma=0$, then Ω is starlike with respect to the point z=0.

The relationship between spiral-like functions and spiral-like regions is indicated by the following lemma.

LEMMA 1. Let f be a normalized univalent function analytic on the unit disk Δ . Then f is spiral-like of order σ if and only if $f(\Delta)$ is spiral-like of order σ .

A proof of the special case $\sigma = 0$ is given by W. Hayman in [3, pp. 14-15]. The proof of the general case is similar.

Let Ω be a region, and let I_{Ω} denote the identity map on Ω . We recall from [1] that the *Hardy number* of Ω is defined by the condition

(1)
$$h(\Omega) = \sup \{p \ge 0: |I_{\Omega}|^p \text{ possesses a harmonic majorant} \}$$
.

The most significant property of $h(\Omega)$ is that if f is analytic on Δ , $f(\Delta) \subseteq \Omega$, and $h(\Omega) > 0$, then f belongs to each Hardy class H_p (0 h(\Omega)). We shall also use the facts that

- (i) if $\Omega_1 \subseteq \Omega_2$, then $h(\Omega_2) < h(\Omega_1)$,
- (ii) if $\Omega_2 = \{az + b: z \in \Omega_1\}$ ($a \neq 0$), then $h(\Omega_2) = h(\Omega_1)$.

Received May 1, 1970.

Michigan Math. J. 18 (1971).