UNIFORM CONVERGENCE OF FOURIER SERIES ON GROUPS, I

C. W. Onneweer and Daniel Waterman

In 1940, R. Salem [6] proved that the Fourier series of a continuous periodic function converges uniformly if $\lim_{n\to\infty} T_n(x) = \lim_{n\to\infty} Q_n(x) = 0$ uniformly in x, where

$$T_{n}(x) = \sum_{p=0}^{(n-1)/2} (p+1)^{-1} [f(x+2p\pi/n) - f(x+(2p+1)\pi/n)],$$

and where $Q_n(x)$ is obtained from $T_n(x)$ by changing π into $-\pi$. In a recent paper [5], C. W. Onneweer proved a similar theorem for Walsh-Fourier series. In this paper, we extend this result to continuous functions defined on certain compact, 0-dimensional, metrizable, abelian groups. Such groups and their character groups were first studied by N. Ja. Vilenkin [7]. The significance of our result is evidenced primarily by its corollaries, as was the case with Salem's original theorem.

1. THE GROUPS G AND X

Let G be a compact, 0-dimensional, metrizable, abelian group, and let X be its character group. Then X is a discrete, countable, abelian torsion group [4, Theorems 24.15 and 24.26]. Vilenkin [7, Sections 1.1 and 1.2] established the existence of an increasing sequence of finite subgroups $\{X_n\}$ of X such that

- (i) $X_0 = \{\chi_0\}$, where χ_0 is the identity character on G,
- (ii) each $\mathbf{X_n}/\mathbf{X_{n-1}}$ is of prime order $\mathbf{p_n}$, and

(iii)
$$x = U_{n=0}^{\infty} x_n$$
.

Moreover, the subgroups X_n can be chosen so that there exists a sequence $\left\{\phi_n\right\}$ of elements of X satisfying the conditions

(i)
$$\phi_n \in X_{n+1} \setminus X_n$$
 and (ii) $\phi_n^{p_{n+1}} \in X_n$.

Using these $\phi_n,$ we can enumerate the elements of X as follows. Let m_0 = 1 and $m_n = \prod_{i=1}^n p_i$. Each natural number k can be represented uniquely as $k = \sum_{i=0}^s a_i m_i, \text{ with } 0 \leq a_i < p_{i+1} \text{ for } 0 \leq i \leq s; \text{ we define } \chi_k \text{ by the formula}$ $\chi_k = \phi_0^{a_0} \cdot \ldots \cdot \phi_s^{a_s}. \text{ Then } X_n = \left\{\chi_i \middle| \ 0 \leq i < m_n\right\}.$

Next, let G_n be the annihilator of X_n , that is, let

Received March 23, 1970.

This research was partially supported by National Science Foundation Grant GP-12320.

Michigan Math. J. 18 (1971).