ON SPECIAL *-REGULAR RINGS

N. Prijatelj and I. Vidav

1. A ring R is *regular* if for every a ϵ R there exists an x ϵ R such that axa = a. A regular ring with an involution * is called *-regular if xx* = 0 implies x = 0. In this note, we study *-regular rings with unit 1 that possess some additional properties. Before specifying these properties, let us state some known facts about regular rings.

Two idempotents e and f of a ring R are *equivalent* (notation: $e \sim f$) if e = xy and f = yx, where $x \in eRf$ and $y \in fRe$. For each element a of a *-regular ring R, we have the relations aR = eR and Ra = Rf, where e and f are uniquely determined projections (self-adjoint idempotents), called the *left* and the *right projection* of a. Further, there exists a uniquely determined element \bar{a} - the *relative inverse* of a such that $a\bar{a} = e$ and $\bar{a}a = f$. The left and the right projections of any element a are equivalent [1].

A *-regular ring is complete (alternate terminology: a regular Baer *-ring) if the lattice of its projections is complete. Let $\{e_{\alpha}\}$ be any set of projections. By LUB e_{α} and GLB e_{α} we shall denote the least upper bound and the greatest lower bound of the set $\{e_{\alpha}\}$. A complete *-regular ring R is finite; that is, if a projection $e \in R$ is equivalent to 1, then e = 1. The central cover of a projection $e \in R$ is the smallest central projection $e \in R$ is the smallest central projection $e \in R$ is

A regular ring is *abelian* if all its idempotents are central. An idempotent $e \in R$ is *abelian* if the subring eRe is abelian. A *-regular ring R is of *type* I if it has an abelian projection with central cover 1, and of *type* II if it does not possess nonzero abelian projections.

Every complete *-regular ring is a direct sum of a ring of type I and a ring of type II (see [1], [3]). A ring of type I is n-homogeneous (or of type I_n) if there exists a set of n mutually orthogonal equivalent abelian projections whose sum is 1. Every complete *-regular ring of type I is a special subdirect sum of homogeneous rings. The proof of this theorem can be found in [1], [2], [3]. Here we shall give a proof of the structure theorem based on the following known properties of complete *-regular rings of type I: (a) abelian projections with the same central cover are equivalent, and (b) if g is the central cover of a projection f, then there exists an abelian projection $e \leq f$ with central cover g.

First we show that in every complete *-regular ring of type I there exist a sequence of orthogonal abelian projections e_n and a decreasing sequence of central projections g_n with the following properties: The central cover of e_n is g_n . If $h_n = g_n - g_{n+1}$ and $h_n \neq 0$, then $h_n e_1$, ..., $h_n e_n$ are orthogonal equivalent abelian projections with the sum h_n . Thus the subring Rh_n is n-homogeneous.

The construction of these sequences is by induction on n. Since R is of type I, there exists an abelian projection e with central cover 1. We put $e_1 = e$ and $g_1 = 1$. Suppose now that the projections e_1, \dots, e_n and g_1, \dots, g_n with the required

Received January 22, 1970.

This work was supported by the Boris Kidric Fund, Ljubljana, Yugoslavia.

Michigan Math. J. 18 (1971).