BRANCHED COVERINGS

William L. Reddy

1. INTRODUCTION

In this paper we consider branched coverings of compact manifolds. A map f of a compact n-manifold M onto an n-manifold N is a branched covering if $f^{-1}f(B_f) = B_f$ and $f \mid (M - B_f)$ is a finite-to-one covering map. Here B_f denotes the set of points of M at which f is not a local homeomorphism. If $f \mid f^{-1}f(B_f)$ is a homeomorphism, the branched covering is a Montgomery-Samelson fibering with zero codimension, and we call it an M-S covering. If $f \mid f^{-1}f(B_f)$ is a covering map, we call it a singular covering. If $f \mid (M - B_f)$ is a regular covering, we call f a regular branched covering. In Section 2, we prove some theorems about general branched coverings. In Section 3, we construct a special homology theory and use it to investigate the structure of the branch set for M-S coverings. In Section 4 we study branched coverings by spheres, and in Section 5 we study branched coverings onto spheres. Section 6 contains some examples and remarks involving smooth branched coverings. We call f: M \rightarrow N smooth if both M and N are n-manifolds with a C^m structure and f is C^m. We call f simplicial if M and N can be triangulated so that f is simplicial with respect to the triangulations. For a survey of problems related to this paper, see [9].

2. BRANCHED COVERINGS

PROPOSITION 1. Let $f: X \to Y$ be an open map from the compact, path-connected and locally path-connected space X to the connected and locally simply connected Hausdorff space Y. Suppose that $q = \min \{ \text{card } f^{-1}(y) : y \in Y \}$ is finite. Then $f_{\#}\pi(X)$ has at most q cosets in $\pi(Y)$, where π denotes the fundamental group and $f_{\#}$ denotes the homomorphism induced by f.

Proof. Suppose that $f_\#\pi(X)$ has p cosets in $\pi(Y)$ and that p>q. Since f(X) is open and compact, hence closed, in Y, the mapping f is onto Y. Therefore Y is path-connected and locally path-connected. Let $g\colon Z\to Y$ be the covering map corresponding to $f_\#\pi(X)$, and let $h\colon X\to Z$ be the lift of f. The map h is open, because f is open and g is a local homeomorphism. It follows that h is onto Z. Since g is a p-to-1 map, we infer that, for each y in Y,

card
$$f^{-1}(y) = card h^{-1}g^{-1}(y) > card g^{-1}(y) = p > q$$
,

contrary to the choice of q.

COROLLARY 1.1. If f: $M \to N$ is a singular covering, dim $B_f \le n - 2$, and $f \mid B_f$ is p-to-1, then $f \# \pi(M)$ has at most p cosets in $\pi(N)$.

Received December 6, 1969.

This research was supported in part by Army Research Office--Durham grant ARO-D-31-124-G892, S2.

Michigan Math. J. 18 (1971).