QUASI-p-REGULARITY OF SYMMETRIC SPACES

Mamoru Mimura

INTRODUCTION

If X and Y are CW-complexes, we say that Y is p-equivalent to X (notation: $X \simeq Y$) if there exists a map $f: X \to Y$ such that

$$_{,}f^{*}: H^{*}(Y; Z_{p}) \cong H^{*}(X; Z_{p}).$$

Following [10], we say that X is p-regular if it is p-equivalent to a product of spheres. We call X quasi-p-regular if X is p-equivalent to a product of spheres and spaces $B_n(p)$ satisfying the condition

$$H^*(B_n(p); Z_p) \cong \Lambda(x_{2n+1}, \mathfrak{P}^1 x_{2n+1}).$$

In [7], P. G. Kumpel discussed the p-regularity of irreducible symmetric spaces. The purpose of this paper is to extend the study to the quasi-p-regularity of irredicible symmetric spaces.

Let G be a compact, connected, simply connected Lie group with an involution σ : $G \to G$. Let K be the identity component of the fixed-point set of σ , and assume that K is totally nonhomologous to zero in G with real coefficients. Then the irreducible symmetric spaces G/K satisfying the hypotheses above are

- (i) $(K \times K)/K$,
- (ii) SU(2n + 1)/SO(2n + 1),
- (iii) SU(2n)/Sp(n),
- (iv) Spin(2n)/Spin(2n 1),
- (v) E_6/F_4 .

As is well known, $(K \times K)/K$ is isomorphic to K. The quasi-p-regularity of the Lie groups was discussed in [8]. Since

$$Spin(2n)/Spin(2n - 1) = S^{2n-1}$$

the space (iv) is quasi-p-regular. Therefore it is sufficient to study the quasi-p-regularity of (ii), (iii), and (v). Our results (Theorems 4.2, 4.3, and 4.4) are as follows.

SU(2n)/Sp(n) is quasi-p-regular if and only if $p \ge n$.

SU(2n+1)/SO(2n+1) is quasi-p-regular if and only if $p \ge n+1$.

 E_6/F_4 is quasi-p-regular if and only if $p \ge 5$.

Corollary 4.5 answers negatively a question of Kumpel [7].

Received September 22, 1969.

This research was partially supported by NSF Grant GP 9637.

Michigan Math. J. 18 (1971).